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I. Introduction

Evolution has a long history in economics. For example:

“When ... the demand price is greater than the supply price ... there

is at work an active force tending to increase the amount brought

forward for sale. On the other hand, when ... the demand price is less

than the supply price ... there is an active force tending to diminish

the amount brought forward for sale. When the demand price is equal

to the supply price ... it is in equilibrium. ... Such an equilibrium is

stable ....” [Marshall (1920)]



“...unless the behavior of businessmen in some way or other approx-

imated behavior that consistent with the maximization of returns, it

seems unlikely that they would remain in business for for long. ... The

process of ‘natural selection’ thus helps to validate the hypothesis ....”

[Friedman (1935)]

“...there are forces at work in any actual economy that tend to drive

an economy toward an equilibrium if it is not in equilibrium already.”

[Arrow and Hahn (1971)]



More recently, evolution has appeared in the form of evolutionary game

theory, organized around two questions:

- Does adaptive behavior provide a foundation for Nash equilibrium?

- Does adaptive behavior provide a means of selecting among multiple

equilibria?

References include (among many others) Samuelson (1997), Sandholm

(2006), Vega Redongo (1995), Weibull (1994), and Young (1997). This

work will not be our focus today. Instead,



“I want to place an admittedly vague dividing line between the two bodies

of research. Within the scope of our discussion, I wish to include models

in which decision makers make deliberate decisions by applying procedures

that guide their reasoning about “what” to do, and probably also about

“how” to decide. In contrast, evolutionary models treat agents as au-

tomata, merely responding to changing environments, without deliberating

about their decisions.” (Rubinstein, 1998, pp. 1-2)



The focus here will similarly be on deliberative decision making and bounded

rationality.

The approach is to view evolution not as a metaphor for a behavioral ad-

justment process, but as the process that formed the agents whose behavior

we study.

This includes our preferences, information processing procedures, decision

rules, and behavior patterns in similar terms.

Evolutionary psychology provides antecedents for this work (e.g., Barkow,

Cosmides and Tooby (1992).



The danger in doing this is that it can be too easy to explain behavior by

simply building this behavior into the model (cf. Postlewaite (1998)). The

experience of psychology with instinctivism is a cautionary tale.

This is presumably why classical models are so popular and useful.

The hope is that a focus on evolutionary foundations can impose some

discipline on this process.

The idea is that the easier it is to construct evolutionary foundations for

a model of bounded rationalty, and the more readily do these foundations

have implications that we can evaluate, the more willing should we be to

work with such a model.



If this method is to be useful, there must be more content to constructing

an evolutionary foundation than, for example, to simply building behavior

into the utility function.

Equivalently, there must be more content to the statement “agents have

a taste for X and there is a good ‘evolutionary’ reason for this taste” than

simply “agents have a taste for X”.

It is not yet clear that this is the case. (And the experience of evolutionary

psychology is mixed (Gould and Lewontin (1979)).) We can build evolu-

tionary models of many things. Are there things we cannot justify? Do

evolutionary models have implications we can evaluate? These questions

are still open.



How do we proceed?

One line of work focusses on how sensible behavior might have evolved in

our original environment that has counterproductive effects in our modern

environment.

- How does our environment differ from the evolutionary environment?

- How do these differences give rise to “mismatch” stories - such as our

taste for sweet and fatty foods.

This approach is popular in evolutionary psychology, but will not be our

main concern.



A second line of work revolves around getting a better understanding of

Nature’s utility maximization problem.

- Why problem does Nature face in the evolutionary environment? What

is the corresponding utility maximization problem?

- What “nonclassical” features might the resulting utility maximization

problem exhibit? What aspects of our behavior might these features ex-

plain?



A third line or work revolves around how agency problems may lead to

interesting features of our behavior.

- Computational issues may force Nature to give us simpler utility functions

than her objective. These may include limitations on our abilities to do

the required calculations in a timely fashion, or on Nature’s ability to code

us with the appropriate utility function.

- Information asymmetries may require that we be given a different utility

function than Nature’s objective. Nature may have information we do not

(returning to the previous point) and we may have information Nature does

not.



A body of work that phrases such as “the evolution of preferences” calls

to mind, that we will not discuss, is the indirect evolutionary approach.

The primary difficulty with this approach is that it revolves around some

version of an assumption that, when two players meet, they are able to

observe each others’ preferences.

This is crucial. It allows players with different preferences to face different

distributions of opponent actions, because these preferences are observed

by opponents and induce the opponents to take different actions.

If players with different preferences face the same distribution of opponent

actions, then the highest payoff must accrue to the player whose pref-

erences induce actions closest to those induced by material preferences.

There is then no scope for anything other than material preferences.



Preferences thus serve as a form of commitment. Results from indirect evo-

lutionary models are invariably findings of the form that it can be valuable

to commit.

What’s wrong with thinking of observable preferences as a commitment

device? In any equilibrium in which the existing preferences do not match

material fitnesses, it would be evolutionarily advantageous to mimic the

existing preferences, while actually having material preferences.

Nature thus has an incentive to produce such hybrids. To accommodate

this, we need a model in which preferences and signals about preferences

evolve.

Once the latter possibility arises, all bets are off. (Robson 1990)

The study of such models remains an interesting open problem.



Work has been done on a variety of topics, including:

- Fairness

- Altruism

- Risk assessment

- Risk preferences (Robson (1992,1996))

- Envy (Samuelson (2004))

- Temptation (Samuelson and Swinkels (2004)

-(Over)confidence (Compte and Postlewaite (2005))

We will have time to examine the first three of these (with references given
below).



II. Fairness

The puzzle: Behavior in bargaining games appears to exhibit a concern for

fairness.

Some possible explanations:

- People “play fair”

- People have utility functions that attach a disutility to asymmetry. (Bolton

and Ockenfels (2000), Fehr and Schmidt (1999))

- There exists a “phantom future.” (Fehr and Henrich (2003)).

We pursue an alternative here, based on Nature’s attempt to conserve on

reasoning resources (Samuelson (2002)).



Consider a population of agents facing a stochastic process that forms

them into pairs to engage in a strategic interaction. There are three types

of interaction:

- ultimatum game

- alternating-offer bargaining (Rubinstein (1982))

- a tournament.

We think of the tournament as a stand in for “all other games.” In par-

ticular, the tournament will be designed to ensure that there is constant

pressure on reasoning resources. This is consistent with the Machiavellian

hypothesis for human intelligence.



A strategy in the tournament is for player i to name a sequence {1, 2, . . . , ni}.

Consider a sequence {ρo, ρ1, ρ2, . . .} with

ρ0 =
1

2
ρk+1 > ρk

ρk+1 − ρk ≤ ρk − ρk−1.

Then if n1 − n2 = k, payoff ρkΠ goes to agent 1 and (1− ρkΠ) to agent

2.

Think of this as a “smoothed” war of attrition.



Behavior is implemented by a finite automaton.

The automaton may have up to three initial states, corresponding to the

three games, but these need not be distinct.

States are costly. C(n, 0) is increasing and strictly convex in n, with

lim
n→−∞

C(n, 0) = 0

lim
n→∞C(n, 0) = ∞

lim
n→∞C(n + 1, 0)− C(n, 0) = ∞.

C(n, α) = C(n− α, 0)

lim
α→∞C(n, α) = 0.



Demands in the bargaining games are subject to trembles. This is essential

to studying backward induction.

We assume that there are no trembles in the tournament, but adding them

affects only the notation.

We let γ index the probability of a tremble.

We fix α and γ, and then examine (Nash) equilibrium automaton choices.

We then let γ → 0 and α →∞.



What sort of behavior does this model suggest we should expect?

We should expect to see failures of backward induction when there exist

alternative Nash equilibria that can be pooled with other games.

Is this result useful? It already allows us to distinguish this model from

those based on inequality aversion. Consider the ultimatum and best shot

games.

Inequality aversion suggests that offers rejected in the ultimatum game

should also be rejected in the best-shot game.

The evidence suggests otherwise (Prasnikar and Roth (1992), also Bin-

more, Ponti, McCarthy, Samuelson and Shaked (2002) and Falk, Fehr and

Fischbacher (2003)).





More generally, the idea behind this model is that people use models to

reason about the world.

To understand behavior, we need to understand these models.

Psychologists have some suggestions for the building blocks we may have

for such models.

Making more precise models of models, and finding and examining their

implications, remains an important challenge for future work.



III. Altruism

The puzzle: people often incur costs (sometimes large costs, in extreme

cases their lives) in providing benefits to others.

This behavior is in tension with our simplest economic models.

It also seems counterproductive from an evolutionary standpoint.

There are numerous semantic pitfalls. See Sober and Wilson (1998) for a

discussion.



We take our model of altruism to be the prisoners’ dilemma:

1

2
C D

C b− c, b− c −c, b
D b,−c 0, 0



Evolutionary biologists tend to explain altruism in terms of group selection.

Group selection has been controversial in biology. The survival of cooper-

ation involves a race between:

- Individual selection

- Migration

- Mutation

- Group selection.

There is (now) general agreement that these forces might combine to allow

cooperation to survive, but many regard this as empirically implausible.



A key requirement in any group selection model of altruism is that there

be some assortativity in the matching process, so that C’s are more likely

to meet C’s.

Concerns about whether group selection pressures will be strong enough

to support altruism are typically arguments about whether there is enough

assortativity.

Often geographical separation or isolation is taken to be the basis of group

formation. We will look at an alternative here, based on relatedness.



Suppose that every family has two children. Mating is monogamous and

there is no inbreeding. Transmission of behavior is sexually haploid. Par-

ents are matched nonassortatively.

Each family has two siblings, who then play the prisoners’ dilemma given

above, once.

Conditional on being a C, your sibling has a gene from the same source as

yours (C) with probability 1
2 and the other parent’s gene (C with probability

p) with probability 1
2.

Conditional on being a D, your sibling has a gene from the same source as

yours (D) with probability 1
2 and the other parent’s gene (C with probability

p) with probability 1
2.



Hence,

p(C|C)− p(C|D) =
1

2
+

1

2
p−

1

2
p =

1

2
.

Expected payoffs in the prisoners’ dilemma are:

C : p(C|C)(b− c) + (1− p(C|C))(−c)

D : p(C|D)(b).

The former is larger if

c

b
≤ p(C|C)− p(C|D) =

1

2
.



This is a special case of Hamilton’s rule (Hamilton (1964), Bergstrom

(2002)). Hamilton observed that one should be willing to incur a cost c in

order to confer a benefit b on another if their coefficient of relatedness, r,

satisfies

r >
c

b
.

In a monogomous population without inbreeding, coefficients of relatedness

are

- Sibling: 1
2

- Half Sibling: 1
4

- Cousin: 1
8.



The difference

p(C|C)− p(C|D)

is commonly referred to as the index of assortativity. If matching among

parents is not assortative, and reproduction is sexual haploid, then the

index of assortativity is the degree of relatedness.



What does this have to do with explaining altruism?

Perhaps nothing. It explains altruism between relatives, but the puzzle is

to explain altruism between nonrelatives.

We now turn to a potential informational constraint. How do we identify

our degree of relatedness?

- One possibility is physiological. Some animals identify family members

by smell.

- Another possibility is behavioral. We may assume we are related to those

who act like they are related to us.



If this is the case, what behavior would we expect? That altruism is

more commonly exhibited in when people find themselves in circumstances

typical of family members.

What evidence do we have?

- Sexual attractiveness of seeming siblings

- Bonding and altruism

- Similarity and altruism

At this point, the prediction is vague and the evidence anecdotal. The

challenge is to make them precise.



IV. Risk Assessment

The puzzle: people appear to be inept at comparing and evaluating risks.

This is true at a personal level. Many people fell safer driving than flying.

Some occupations must enforce personal risk-control measures.

It is true at a collective level. There appears to be no coherence to our

risk management policies.

We explore here a simple model of why Nature may not evaluate all risks

equally. (See Bergstrom (2004), Curry (2001), Gillespie (1973), Houston

and McNarmara (1999), and Robson (1996).)



For our first model, we consider a finite initial population consisting of

different types.

Let a type i consist of a vector (p1(i), . . . , pn(i)) of probabilities, where pi

is the probability of having i offspring. (When zero offspring is a possibility,

we get analogous results, conditioned on nonextinction.)

The expected number of offspring is given by:

g(i) =
n∑

j+1

pj(i)j

Let zt(i) be the number of agents in the population consisting of type i at

time t.



Which type will come to dominate the population? This is a branching

process. The basic tool is

Proposition 1 With probability 1,

zt(i)

g(i)t
→ W

for some nonnegative random variable W . If extinction is impossible (i.e.,

p0(i) = 0, then W is positive with probability 1.

The proof exploits the law of large numbers. Notice that W must be

random, since the initial outcomes will have a permanent effect on zt/gt.



Now let us compare two types, 1 and 2. Suppose g(1) > g(2). With

probability one, there are numbers w1 and w2 such that, for any ε there is

a time T such that, for all t > T , we have

zt(1) > (w1 − ε)g(1)t

zt(2) < (w2 − ε)g(2)t.

But then, for large t,

zt(1)

zt(2)
> K

(
g(1)

g(2)

)t

,

and hence type 1 dominates the population.



The conclusion: Nature selects the type with the highest expected number

of offspring.

Now suppose that, in each periods, each agent must select a lottery over

consumption. Let qk be the probability of consumption bundle xk and let

pj(xk) be the probability of j offspring when realizing bundle xk. Then

Nature’s objective is

max
x

∑
k

∑
j

qkjpj(xk) =
∑
k

qku(xk)

for some “utility” function u. Risk attitudes over consumption arise out

of the maximization of expected offspring.



Now for a variation on this model, suppose that the environment can be
one of two states, H or L. Each period, a state is drawn independently,
with each state having probability 1

2.

There are two types of agents. A type one agent is sensitive to the state,
producing 4 offspring in state H and 0 offspring in state L. A type two
agent produces 3 offspring with probability 1

2 and 0 with probability 1
2, but

independently of the state.

We thus have g(1) > g(2). Our previous analysis applies to agents of
type 2. With positive probability, such agents become extinct, but this
probability is less then one. If they do not become extinct, their numbers
eventually become proportional (with probability 1) to g(2)t.

In contrast, type 1 becomes extinct the first time state L occurs. Hence, ei-
ther the entire population becomes extinct, or type 2 eventually dominates
the population.



The implication is that aggregate uncertainty us quite different than idio-

syncratic uncertainty.

This role for aggregate uncertainty does not hinge upon extinction. Again

let there be two equally likely states H and L and two types of agents.

Type 1 produces 2 offspring with probability 1
2 and 1 offspring with proba-

bility 1
2, independently of the current state. Then, by our previous results,

zt(1) is eventually proportional to
(
3
2

)t
.

Type 2 produces 2 offspring in state H and 1 in state L. Then we have

zt(2) = 2n(t), where n(t) is the (random) number of time state H has

been drawn in the periods 0, . . . , T − 1.



As t gets large,
n(t)

t gets very close to 1
2. Then we have

1

t
ln zt(2) =

n(t)

t
ln 2 ≈

1

2
ln 2 = ln(

√
2).

Because 3
2 >

√
2, type 1 dominates the population.



More generally, let there be a finite number of states of the environ-

ment s = 1, . . . , S, drawn independently in each period with probabilities

ρ1, . . . , ρS.

Let gs(i) be the expected number of offspring of type i in state s. Then

the basic tool is that, with probability one,

zT (i)∏T−1
t=0 gs(t)(i)

→ W,

where s(t) is the realized state in period t and W is a (nondegenerate)

random variable, equal to zero (with probability 1) if and only if extinction

occurs.



We then have, approximately, for large T ,

zT (i) =
T−1∏
t=0

gs(t)(i)W,

or, neglecting the constant W ,

1

T
zT (i) =

1

T

T−1∑
t=0

ln gs(t)(i) =
S∑

s=1

ns(T )

T
ln gs(i),

where N(s) is the number of times state s has occurred.



From this, and another law-of-large-numbers argument, we get, for suffi-

ciently large T ,

1

T
zT (i) =

S∑
s=1

ρ(s) ln gs(i) ≡ ρ(i).

From this, we conclude

- If there exists a type ρ(i) > 1, then the population avoids extinction with

probability one, and conditional on nonextinction, the type with the largest

value of ρ(·) dominates the population.



The conclusion is the idiosyncratic and aggregate uncertainty are treated

differently.

One first calculates, conditional on each state in the aggregate uncertainty,

the expected fitness of each type.

One then calculates takes the expectation, over the aggregate uncertainty,

of the logs of these fitnesses.

Conditional on nonextinction, the highest such expectation eventually dom-

inates the population.



In the absence of aggregate uncertainty, the criterion is to maximize the

expected number of offspring. If there is only aggregate uncertainty, the

criterion is to maximized the expectation of the log of the number of

offspring.

This makes the agent look more risk averse over aggregate than idiosyn-

cratic uncertainty.



Again let pj(k) be the probability that consuming bundle x leads to j

offspring, and let u(x) =
∑

j jpj(x) be the expected number of offspring

from bundle x. This is independent of the state and common across agents.

Now suppose that the state s is drawn, and then each individual faces a

lottery over consumption bundles that is independent across individuals,

given the aggregate state.

Let qk(s) be the probability of bundle k in state s. Then evolutionary

success will accrue to agents selecting the lottery maxmizing

S∑
s−1

ρ(s) ln

∑
k

∑
j

jqk(s)pj(xk)

 =
S∑

s−1

ρ(s) ln

∑
k

qk(s)u(xk)





This is no longer an expected utility. In particular, the objective is not
linear in the probabilities qi(s).

To illustrate the implications, suppose the utility function is u(x) = x and
x ∈ <, so the agent is supposedly an expected-payoff maximizer.

Let there be two, equally likely, aggregate states. Suppose the agent has
a choice between a deterministic payoff of 3 and a lottery that gives 2 in
one state and 4 in the other. The former is strictly preferred. The agent
is thus risk averse over aggregate uncertainty. (Note the same lottery
with idiosyncratic payoffs would make the agent indifferent to the certain
outcome.)

Let there be two lotteries, one giving idiosyncratic payoffs of 2 and 4, each
with probability 1

2, and one giving 2 in one state and 4 in the other. The
former is strictly preferred. We can then perturb this so that the agent
strictly prefers a stochastically dominated lottery.



Once again, we have a potential informational constraint.

How do we identify which risks are aggregate, and which are idiosyncratic?



If this model of risk attitudes is relevant, what behavior would we expect?

That people tend to be more averse to aggregate than to idiosyncratic risk.

What evidence do we have?

- Psychologists have studied assessment of and reactions to risk.

- A consistent finding is that people are especially fearful of risky situations

in which they perceive themselves to have no control. Controlled risk is

more acceptable. This is often offered to explain the cars vs. planes

distinction.

- Could control be a proxy for aggregate risk?

At this point, the prediction is again vague and the evidence anecdotal.

The challenge is to make them precise.



IX. Conclusion

We are interested in economic models that may allow more freedom in

specifying preferences and describing preferences than classical models.

The difficulty is that, without some discipline, such models allow us to

rationalize anything.

Evolutionary models hold the promise of providing such discipline. It re-

mains to be seen whether this promise will be realized.


