Paul Milgrom's work on Auctions and Information: A Retrospective

Vijay Krishna

Nemmers Conference

November 6, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Scope of this talk

- Theory of single-object auctions
 - Milgrom and Weber (1982) on symmetric auctions
 - Engelbrecht-Wiggans, Milgrom and Weber (1983) on informational asymmetries

- Plan
 - Brief account of preceding work
 - Contributions
 - Subsequent work on asymmetric auctions

In the beginning ...

- Vickrey (1961)
 - model of auctions as games of incomplete information

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- compare performance of different formats
 - expected revenue
 - efficiency

Vickrey (1961)

- 1. independent private values model
- 2. Dutch descending \equiv first-price auction (FPA)
- 3. English ascending \equiv second-price auction (SPA)
- 4. equilibrium of FPA (example)
- 5. revenue equivalence (example)
- 6. asymmetric first-price auctions (example)
- 7. multi-unit Vickrey auction

Revenue Equivalence Principle

- Fix an auction A such that only winner pays.
- Increasing equilibrium β^A
- $W^A(z) =$ expected price paid by *winner* who bids $\beta^A(z)$.

• FPA

$$W^{\sf FP}(z)=\beta^{\sf FP}(z)$$

• SPA

$$W^{\mathsf{SP}}(z) = E[Y_1 \mid Y_1 < z]$$

Revenue Equivalence Principle

• Can show by direct computation that

$$\beta^{\mathsf{FP}}(z) = E[Y_1 \mid Y_1 < z]$$

and so (Vickrey, 1961 & 1962):

$$W^{\mathsf{FP}}(z) = W^{\mathsf{SP}}(z)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• But, need to abstract away from specifics ...

Revenue Equivalence Principle

Theorem

If $W^{A}(0) = 0 = W^{B}(0)$, then $W^{A}(x) = W^{B}(x)$.

- Proof:
- Let $G(z) = \Pr[Y_1 < z]$.
- Bidder's problem

$$\max_{z} G(z) x - G(z) W^{A}(z)$$

• Optimal to set z = x, so

$$g(x) x = \left(G(x) W^{A}(x)\right)'$$

So

$$W^{A}(x) = \frac{1}{G(x)} \int_{0}^{x} yg(y) dy$$
$$= E[Y_{1} | Y_{1} < z]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Common Value Model

- True value $V \sim H$
- Conditionally independent signals

•
$$X_i \sim F(\cdot \mid V = v)$$
 i.i.d.

• Wilson (1967), Ortega-Reichert (1968) derived equilibrium in FPA (also examples with closed-form solutions)

MW's General Symmetric Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Interdependent values $v_i(x_1, x_2, ..., x_N, s)$
 - *v_i* symmetric in **x**_{-*i*}
- Affiliated signals $f(x_1, x_2, ..., x_N, s)$
 - f symmetric in x

MW's General Symmetric Model

- IPV model and CV model are special cases
- Affiliation assumption is key
 - inherited by order statistics
 - monotone functions

Main Results in MW

- Characterizing symmetric equilibria in FP, SP and English auctions
- $R^{\text{SP}} \ge R^{\text{FP}}$
 - > with strict affiliation; private values OK
- $R^{Eng} \ge R^{SP}$
 - > with strict affiliation, interdependence and N > 2
- $\widehat{R}^A \ge R^A$ Public information release (as a policy) increases revenue

- All standard auctions are *ex post* efficient
 - need single-crossing condition

IPV and MW

Symmetric IPV Model	MW Model
$Dutch \equiv FP$	$Dutch \equiv FP$
$English \equiv SP$	$R^{\sf Eng} \ge R^{\sf SP}$
$R^{SP}=R^{FP}$	$R^{SP} \geq R^{FP}$
*	$\widehat{R}^A \geq R^A$

Equilibria of Standard Auctions

• Define
$$v(x, y) = E[V_1 | X_1 = x, Y_1 = y]$$

$$\beta^{\mathsf{SP}}(x) = v(x, x)$$

• with private values
$$eta^{\mathsf{SP}}\left(x
ight)=x$$

$$\beta^{\mathsf{FP}}(x) = \int_{0}^{x} v(y, y) \, dL(y \mid x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where $L(\cdot \mid x)$ is determined by $G(\cdot \mid x)$

• with private values
$$eta^{\mathsf{FP}}\left(x
ight) = E\left[Y_{1} \mid Y_{1} < x
ight]$$

English Auction

• An ex post equilibrium is

$$\beta_{N}(x) = v(x, x, ..., x)$$

$$\beta_{N-1}(x, p_{N}) = v(x, x, ..., x, x_{N})$$

$$\vdots$$

$$\beta_{k}(x, \underbrace{p_{k+1}, ..., p_{N}}_{\text{Drop-out prices}}) = v(x, x, ...x, \underbrace{x_{k+1}, ..., x_{N}}_{\text{Drop-out signals}})$$

Given information inferred from drop-out prices, stay until price reaches value if all remaining bidders dropped out at this instant.

Revenue Ranking Results

All the revenue ranking results, that is,

$$R^{Eng} \ge R^{SP} \ge R^{FP}$$

can be deduced by direct computation from the equilibrium strategies.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• But, again helpful to abstract away from specifics ...

Linkage Principle

- Fix an auction A such that only winner pays.
- Increasing equilibrium β^A .
- $W^A(z, x) =$ expected price paid by *winner* who bids $\beta^A(z)$ when signal is x.

$$W^{\mathsf{FP}}(z,x) = \beta^{\mathsf{FP}}(z)$$

• SPA

$$W^{\mathsf{SP}}(z,x) = E[\beta^{\mathsf{SP}}(Y_1) \mid X_1 = x, Y_1 < z]$$

• When is
$$W^A(x, x) \ge W^B(x, x)$$
?

Linkage Principle

Theorem If (i) $W_2^A(x,x) \ge W_2^B(x,x)$; and (ii) $W^A(0,0) = 0 = W^B(0,0)$, then

$$W^A(x,x) \ge W^B(x,x)$$

• Proof:

• Let $G(z \mid x) = \Pr[Y_1 < z \mid X_1 = x]$.

• Bidder's problem in auction A

$$\max_{z} \int_{0}^{z} v(x, y) g(y \mid x) dy - G(z \mid x) W^{A}(z, x)$$

• Optimal to set z = x, so

$$W_1^A(x,x) = \frac{g(x \mid x)}{G(x \mid x)} v(x,x) - \frac{g(x \mid x)}{G(x \mid x)} W^A(x,x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Linkage Principle

Similarly, in auction B:

$$W_1^B(x,x) = \frac{g(x \mid x)}{G(x \mid x)} v(x,x) - \frac{g(x \mid x)}{G(x \mid x)} W^B(x,x)$$

If we write

$$\Delta(x) = W^{A}(x, x) - W^{B}(x, x)$$

then

$$\Delta'(x) = -\frac{g(x \mid x)}{G(x \mid x)}\Delta(x) + [W_2^{\mathcal{A}}(x, x) - W_2^{\mathcal{B}}(x, x)]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since $\Delta(0) = 0$ and $\Delta(x) < 0$ implies $\Delta'(x) > 0$, we have $\Delta(x) \ge 0$.

Public Information Release

•
$$\widehat{W}^{\mathsf{FP}}(z,x) = E\left[\beta^{\mathsf{FP}}(z,S) \mid X_1 = x\right]$$

• so by affiliation
$$\widehat{W}_2^{\mathsf{FP}}(x,x) \ge 0$$

• Linkage principle now implies that $\widehat{R}^{\mathsf{FP}} \geq R^{\mathsf{FP}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Similar argument for $R^{Eng} \ge R^{SP}$

Theory and Policy

- Affiliation is key for existence of monotone pure strategy equilibria in FPA in asymmetric situations
 - Athey (2001)
 - Reny & Zamir (2004)
 - de Castro (2007) ("just right")
- Affiliation + linkage principle \rightarrow advantages of open auctions

market design in other settings

Empirical Work and Experiments

• Hendricks, Pinkse and Porter (2003) use ex post value data to show that bidding in (symmetric) off-shore oil auctions is consistent with equilibrium of MW model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Kagel and Levin's (2002) extensive work on experiments concerning MW model.

An Impossible Ideal

- Beautiful deep theory
- Clean results
- Strong policy recommendations (open auctions, transparency)

Empirical support

Generalizations?

- Can the linkage principle be generalized to accommodate
 - asymmetries among bidders?
 - symmetric multi-unit auctions?
- The two are closely related: even symmetric multi-unit auctions lead to asymmetries
 - my bid for first unit may compete with your bid for second unit

Asymmetries and Revenue Rankings

• Even with asymmetric *independent* private values $(F_1 \neq F_2)$ we know that

$$R^{\mathsf{FP}} \gtrless R^{\mathsf{SP}}$$

Vickrey (1961)

- Ranking depends on distributions
 - $R^{\mathsf{FP}} \gtrless R^{\mathsf{SP}}$ even if F_1, F_2 are
 - stochastically ranked
 - regular
 - (truncated) Normals
 - Maskin and Riley (2000) classification.
- Also, FP is inefficient.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Resale

- Inefficiency leads to possibility of resale.
 - a simple model:
- Stage 1: First-price auction
 - Price (winning bid) is announced
- Stage 2: Winner (new owner) makes a take-it-or-leave-it offer to other buyer
 - Note resale takes place under incomplete information, so still inefficient

Resale

Theorem Suppose N = 2 and F_1 , F_2 regular. Then with resale

$$\overline{R}^{FP} \geq \overline{R}^{SP}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Hafalir and Krishna (2008)
- Extensions to N > 2?

Public Information with Asymmetries: Example

Suppose X_1, X_2, S uniform i.i.d. and

$$v_1(x_1, x_2, s) = x_1 + \frac{1}{2}(x_2 + s)$$
 interdependent
 $v_2(x_1, x_2, s) = x_2$ private

• With no information release by seller, equilibrium in SPA

$$eta_1\left(x_1
ight)=2x_1+E\left[S
ight]$$
 and $eta_2\left(x_2
ight)=x_2$

• With information release,

$$\widehat{eta}_{1}\left(x_{1}, s
ight)=2x_{1}+s$$
 and $\widehat{eta}_{2}\left(x_{2}
ight)=x_{2}$

Example (contd.)

• Given x_1 and x_2 , the (expected) prices are

$$P = \min \{2x_1 + E[S], x_2\} \widehat{P} = E[\min \{2x_1 + S, x_2\}]$$

- But "min" is a concave function and so $\widehat{P} < P$.
- In this example, release of information *S* = *s* decreases revenue in a SPA:

$$\widehat{R}^{\mathsf{SP}} < R^{\mathsf{SP}}$$

• Similar failure of linkage principle in multi-unit auctions (Perry and Reny, 1999)

Asymmetries and Revenue Rankings: Example

Suppose

$$\begin{array}{rcl} v_1(x_1, x_2, x_3) &=& \frac{1}{2}x_1 + \frac{1}{2}x_2 & \text{common} \\ v_2(x_1, x_2, x_3) &=& \frac{1}{2}x_1 + \frac{1}{2}x_2 & \text{common} \\ v_3(x_1, x_2, x_3) &=& x_3 & \text{private} \end{array}$$

 X_1 , X_2 , and X_3 are i.i.d. uniform on [0, 1].

• In this example

$$R^{\sf Eng} < R^{\sf SP}$$

• Revenue rankings do not generalize to asymmetric situations.

From Revenue to Efficiency

- MW paper derives very general and powerful results on revenue comparisons in *single*-object *symmetric* settings.
- As the examples show, general revenue ranking results are unlikely to hold in more general situations
 - for instance, question regarding treasury bill auctions (discriminatory vs. uniform-price) remains open
- Auction theory has turned to the question of efficiency
 - much of this work is about the efficient allocation of *multiple* objects in a private value setting (Larry Ausubel's talk)
 - but question of allocating *single* objects in *asymmetric* settings with *interdependent* values remains

Efficient Allocations

- Suppose we have N buyers with values $v_i(x_1, x_2, ..., x_N)$
- Ex post efficiency means that if i gets object then $v_i(x_1, x_2, ..., x_N) \ge v_j(x_1, x_2, ..., x_N)$ for $j \ne i$.
- Maskin (1992) suggested that English auctions may allocate efficiently in asymmetric settings

• Proof for N = 2 (under single-crossing)

Efficiency under Asymmetries

- Step 1: solve for inverse bidding strategies ϕ_1 and ϕ_2 such that

$$\begin{array}{rcl} v_{1}\left(\phi_{1}\left(p\right),\phi_{2}\left(p\right)\right) & = & p \\ v_{2}\left(\phi_{1}\left(p\right),\phi_{2}\left(p\right)\right) & = & p \end{array}$$

- Single-crossing guarantees monotone solution
- Step 2: If $p_1 > p_2$ (1 wins), then we have

•
$$x_1 = \phi_1(p_1) > \phi_1(p_2) \pmod{2}$$

• $x_2 = \phi_2(p_2)$

So

$$v_{1}(x_{1}, x_{2}) = v_{1}(\phi_{1}(p_{1}), \phi_{2}(p_{2}))$$

> $v_{1}(\phi_{1}(p_{2}), \phi_{2}(p_{2}))$
= p_{2}

Efficiency under Asymmetries

- We have argued that there is an *ex post* equilibrium (distribution-free)
- Is this *ex post* efficient?

• Yes:

$$v_{1} (\phi_{1} (p_{2}), \phi_{2} (p_{2})) = v_{2} (\phi_{1} (p_{2}), \phi_{2} (p_{2})) = p_{2} v_{1} (\phi_{1} (p_{2}), x_{2}) = v_{2} (\phi_{1} (p_{2}), x_{2}) v_{1} (\phi_{1} (p_{1}), x_{2}) > v_{2} (\phi_{1} (p_{1}), x_{2})$$
(SC)
 $v_{1} (x_{1}, x_{2}) > v_{2} (x_{1}, x_{2})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

English Auctions

• Maskin's two-person result does not extend without strengthening SC conditions (how my signal affects aggregate value).

Theorem

Suppose single crossing in the "aggregate" is satisfied. Then the English auction has an efficient ex post equilibrium.

- Krishna (2002) (also, Wilson's (1998) log-normal model)
- Dubra, Echenique and Manelli (2009) have recently provided weaker sufficient (and almost necessary) conditions.
- The constructions generalize the *ex post* equilibrium construction in MW

English Auctions

- Milgrom and Weber advocated English auctions on *revenue* grounds (Linkage Principle)
 - revenue results do not extend to asymmetric situations, but ...

• It turns out that even in asymmetric situations open auctions have remarkable *efficiency* properties!

Open Auctions

 The general message that open auctions are advantageous is powerful and still resonates in more general and realistic settings.

- Bravo English auctions!
- Bravo Paul Milgrom!

References

- Athey, S. (2001): "Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete Information," Econometrica, 69, 861–889.
- 2. de Castro, L. (2007): "Affiliation and Dependence in Economic Models," Working Paper, University of Illinois.
- 3. Dubra, J., F. Echenique and A. Manelli (2009): "English Auctions and the Stolper-Samuelson Theorem," Journal of Economic Theory, 144, 825–849.
- Engelbrecht-Wiggans, R., P. Milgrom, and R. Weber (1983): "Competitive Bidding and Proprietary Information," Journal of Mathematical Economics, 11, 161–169.
- 5. Hafalir, I. and V. Krishna (2008): "Asymmetric Auctions with Resale," American Economic Review, 98, 87–112.

- Hendricks, K., J. Pinkse and R. Porter (2003): "Empirical Implications of Equilibrium Bidding in First-Price, Symmetric Common Value Auctions," Review of Economic Studies, 70, 115–145.
- 7. Kagel, J. and D. Levin (2002): Common Value Auctions, Princeton University Press.
- Krishna, V. (2002): "Asymmetric English Auctions," Journal of Economic Theory, 112, 261–288.
- Maskin, E. (1992): "Auctions and Privatization," in H. Siebert (ed.), Privatization, Kiel: Institut fur Weltwirtschaften der Universität Kiel, 115–136.

10. Maskin, E., and J. Riley (2000): "Asymmetric Auctions," Review of Economic Studies, 67, 413–438.

- 11. Milgrom, P., and R. Weber (1982): "A Theory of Auctions and Competitive Bidding," Econometrica, 50, 1089–1122.
- 12. Myerson, R. (1981): "Optimal Auction Design," Mathematics of Operations Research, 6, 58–73.
- Ortega Reichert, A. (1968): Models for Competitive Bidding under Uncertainty, Ph.D. Dissertation (Technical Report No. 8), Department of Operations Research, Stanford University.
- Perry, M., and P. Reny (1999): "On the Failure of the Linkage Principle in Multi-Object Auctions," Econometrica, 67, 885–890.

15. Reny, P. and S. Zamir (2004): "On the Existence of Pure Strategy Monotone Equilibria in Asymmetric First-Price Auctions," Econometrica, 72, 1105–1125.

- Riley, J., and W. Samuelson (1981): "Optimal Auctions," American Economic Review, 71, 381–392.
- 17. Vickrey, W. (1961): "Counterspeculation, Auctions and Competitive Sealed Tenders," Journal of Finance, 16, 8–37.
- Vickrey, W. (1962): "Auctions and Bidding Games," in Recent Advances in Game Theory, Princeton Conference Series, 29, Princeton, NJ: Princeton University Press, 15–27.
- 19. Wilson, R. (1967): "Competitive Bidding with Asymmetrical Information," Management Science, 13, 816–820.
- Wilson, R. (1998): "Sequential Equilibria of Asymmetric Ascending Auctions: The Case of Log-Normal Distributions," Economic Theory, 12, 433–440.

(日) (同) (三) (三) (三) (○) (○)