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Abstract

We develop a microeconomic model of endogenous growth where clean and dirty technologies com-
pete in production and innovation� in the sense that research can be directed to either clean or dirty
technologies. If dirty technologies are more advanced to start with, the potential transition to clean
technology can be di¢ cult both because clean research must climb several steps to catch up with dirty
technology and because this gap discourages research e¤ort directed towards clean technologies. Carbon
taxes and research subsidies may nonetheless encourage production and innovation in clean technologies,
though the transition will typically be slow. We characterize certain general properties of the transition
path from dirty to clean technology. We then estimate the model using a combination of regression
analysis on the relationship between R&D and patents, and simulated method of moments using mi-
crodata on employment, production, R&D, �rm growth, entry and exit from the US energy sector. The
model�s quantitative implications match a range of moments not targeted in the estimation quite well.
We then characterize the optimal policy path implied by the model and our estimates. Optimal policy
heavily relies on research subsidies as well as carbon taxes. We use the model to evaluate the welfare
consequences of a range of alternative policy structures. For example, just relying on carbon taxes or
delaying intervention both have signi�cant welfare costs� though their implications for medium run
temperature increases are quite di¤erent.
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1 Introduction

Recent economic research has recognized the importance of transition to clean technology in

controlling and reducing fossil fuel emissions and potentially limiting climate change.1 Recent

empirical work has also shown that innovation may switch away from dirty to clean technolo-

gies in response to changes in prices and policies. For example, Newell, Ja¤e and Stavins (1999)

show that following the oil price hikes, innovation in air-conditioners turned towards produc-

ing more energy-e¢ cient units compared to the previous focus on price reduction; Popp (2002)

�nds that higher energy prices are associated with a signi�cant increase in energy-saving inno-

vations; Hassler, Krusell and Olovsson (2011) estimate a trend break in factor productivities in

the energy-saving direction following the era of higher oil prices; and Aghion et al. (2012) �nd

a signi�cant impact of carbon taxes on the direction of innovation in the automobile industry

and further provide evidence that clean innovation has a self-perpetuating nature feeding on

its own past success. Based on this type of evidence, Acemoglu et al. (2012a) suggest that a

combination of (temporary) research subsidies and carbon taxes can successfully redirect tech-

nological change towards cleaner technologies. Several conceptual and quantitative questions

remain, however. The �rst is whether, in the context of a micro-founded quantitative model,

reasonable policies can secure a transition to clean technology. The second is whether, in the

presence of carbon taxes, there is still any role for signi�cant research subsidies. The third

concerns how rapidly the transition to clean technology should take place under optimal policy.

A systematic investigation of these questions necessitates a micro model of innovation and

production where clean and dirty technologies can compete given the prevailing policies and

research incentives (and the direction of technological change) are also endogenously deter-

mined as a function of these policies.2 It also necessitates a combination of micro data for

the modeling of competition in production and innovation, and a quantitative model �exible

enough to represent realistic dynamics of carbon emissions and potential climate change. This

paper is an attempt in this direction.

Our �rst contribution is to develop a tractable and parsimonious microeconomic model

for this purpose. In our model, which we view as an abstract representation of the energy

1On climate change, see, e.g., Stott et al. (2004) on the contribution of human activity to the European
heatwave of 2003, Emanuel (2005) and Landsea (2005) on the increased impact and destructiveness of tropical
cyclones and Atlantic hurricanes over the last decades; and Nicholls and Lowe (2006) on sea-level rise. On
economic costs of climate change, see Mendelsohn et al. (1994), Pizer (1998), and Weitzman (2009). On
economic analyses of climate change, see, e.g., Golosov et al. (2011), Hassler and Krusell (2012), Krusell and
Smith (2009), MacCracken et al. (1999), Nordhaus (1994), Nordhaus and Boyer (2000), Nordhaus (2008), and
Stern (2007). On endogenous technology and climate change, see, Acemoglu et al. (2012a), Bovenberg and
Smulders (1995, 1996), Goulder and Mathai (2000), Goulder and Schneider (1999), Grimaud et al. (2011),
Hartley et al. (2011), Hassler, Krusell and Olovsson (2011), Popp (2002, 2004), and Van der Zwaan et al.
(2002).

2Acemoglu et al. (2012a) assume that clean and dirty inputs are combined with a constant elasticity of
substitution, which allows for limited form of competition between clean and dirty technologies.
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production and delivery sectors, each one of a continuum of intermediate goods can be produced

either using a dirty or clean technology, each of which has a knowledge stock represented by a

(separate) quality ladder. Given production taxes (which are di¤erential by type of technology),

pro�t-maximizing �nal good producers choose which technology to utilize. Pro�t-maximizing

�rms also decide whether to conduct research to improve clean or dirty technologies. Clean

research, for example, leads to an improvement over an existing clean technology, though

there is also a small probability of a breakthrough which will build on and surpass the dirty

technology when the dirty technology is the frontier in the relevant product line. Research

and innovation decisions are impacted both by policies and the current state of technology in

the two sectors. For example, when clean technology is far behind, most research directed to

that sector will generate incremental innovations that cannot be pro�tably produced (unless

there are very high levels of carbon taxes). However, if clean research can be successfully

maintained for a while, it slowly becomes self-sustaining as the range of clean technologies

that can compete with dirty ones expands as a result of a series of incremental innovations.

Our second contribution is to estimate parameters of this model using microdata on R&D

expenditures, patents, sales, employment and �rm entry and exit from a sample of US �rms

in the energy sector. The data we use for this exercise are from the Census Bureau�s Longi-

tudinal Business Database and Economic Censuses, the National Science Foundation�s Survey

of Industrial Research and Development, and the NBER Patent Database. We design our

sample around innovative �rms in the energy sector that are in operation during the 1975-

2004 period. We use our sample to directly estimate some key parameters of the model and

the initial distributions of dirty- and clean-energy product lines.3 In particular, we estimate

two of the key parameters of the model with regression analysis using R&D and patents. We

also estimate the initial distribution of productivity gaps between clean and dirty technologies

in the economy by allocating the patent stocks of �rms innovating in these technology areas

across the three-digit industries in which the �rms are operating. The remaining four crucial

parameters are estimated using simulated method of moments (we impose the discount rate

and the fraction of scientists in the labor force from the data rather than estimating these from

the model). We show that, despite its parsimony, the �t of the model to a rich and diverse set

of moments not targeted in the estimation is fairly good.

We then combine this structure with a parsimonious model of the carbon cycle. Our

modeling of the carbon cycle follows Golosov et al. (2011) and is fairly �exible despite its

simplicity. Our �nal contribution is to use this estimated quantitative model for the analysis

of optimal policy, in particular optimal carbon taxes and research subsidies,4 and a range of

counterfactual policy experiments.

3See Popp (2006) and Ja¤e et al. (2010) for background on technology, R&D and innovation in the energy
sector.

4We do not allow additional tax instruments to remove the monopoly distortions in the economy.
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Our main results are as follows. Though it is intuitive to expect that carbon taxes should

do most of the work in the optimal allocation� because they both reduce current emissions

and encourage R&D directed to clean technologies� quantitatively we �nd a major role for

research subsidies. For example, with an annual discount rate of 1% (similar to the number

favored by Nordhaus, 2007) and focusing on constant policies, the optimal research subsidy is

61% (meaning that the government pays for 61 cents out of every dollar of R&D expenditure

for clean technology) while the carbon tax is 16%. The numbers are more extreme with a

discount rate of 0.1% for the social planner (similar to the number favored by Stern, 2007)

but with a similarly major role for research subsidies: a research subsidy of 95% and a carbon

tax of 44%. When we allow time-varying policies, the overall pattern is broadly similar and

still heavily relies on research subsidies, but with some notable di¤erences: �rst, the research

subsidy is initially slightly more aggressive and then declines somewhat over time; second, with

a discount rate of 1%, carbon taxes are backloaded (low, in fact zero, for an extended period

of time and then high); and third, with a discount rate of 0.1%, carbon taxes are frontloaded

(starting out higher and declining over time).5 Despite the di¤erences between the models, the

reason for the major role for research subsidies is related to the one emphasized in Acemoglu

et al. (2012a).6 Research subsidies are powerful in redirecting technological change, and given

this, it is not worth distorting the initial production too much by introducing heavy carbon

taxes. It is important to emphasize that research subsidies are not being used just because

there is a market failure (and an uninternalized externality) in research. In fact, in our model,

in the absence of externalities from carbon, or in the special case in which there is only a dirty

or a clean sector, the social planner would have no reason to use research subsidies� because a

scarce factor, skilled labor, is being used for research and no other purpose, and thus the social

planner cannot increase the growth rate by subsidizing research. The reason why the social

planner heavily uses research subsidies is because when carbon creates negative externalities,

inducing a transition to clean technology is an e¤ective way of reducing future carbon emissions

by changing the path of technological progress.

Another useful comparison is to current US policies. We estimate the e¤ective research

5Our time-varying optimal policy results need to be interpreted with caution, since the resulting optimal
policy sequence is not time consistent.

6Major di¤erences between the models include: (1) here the damage from atmospheric carbon is modeled
as impacting production along the lines of previous literature rather than directly utility; (2) here there is no
�environmental disaster� threshold, making it possible for us to calibrate the parameters more closely to data
and without taking a position on carbon emissions in the rest of the world; (3) in contrast to the constant
elasticity of substitution formulation, dirty and clean sectors are not complements in our model, but explicitly
compete in each product line. This last one is the most important distinction, enabling us to use microdata on
innovation and production. It also implies a di¤erent pattern of production distortions from carbon taxes. In
Acemoglu et al. (2012a), carbon taxes are particularly distortionary when the dirty sector is behind (and thus
its relative prices high because of the imperfect substitutability). In contrast, in our model the carbon tax is
least distortionary when the clean technology has already taken over or is about to take over almost all product
lines.
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subsidy from the di¤erential between clean and dirty �rms in our sample in the use of federally

funded R&D expenditure. Utilizing this estimate and di¤erent values of e¤ective carbon tax at

the moment and its likely values in the future, our estimated optimal policies are quite di¤erent

from their US counterparts, and we show that under US policies, climate change dynamics will

be signi�cantly di¤erent (and worse).

In terms of counterfactual policies, we investigate the welfare costs of just relying on carbon

taxes and delaying intervention. The most notable result here is that the welfare costs of

delaying the optimal policy by 50 years (laissez faire) is very signi�cant. With a discount rate

of 1%, delaying optimal policy by 50 years has a welfare cost equivalent to a permanent 8%

drop in consumption. With a discount rate of 0.1%, the consumption-equivalent welfare cost

is 16.6%. The costs of relying just on carbon tax (without any research subsidy) are more

modest but still signi�cant, 4.2% and 3.4%, with the same two discount rates, respectively.

We also consider several variations and robustness checks to show which aspects of the

model are important for our main theoretical and quantitative results. In particular, we in-

vestigate the implications of using di¤erent discount rates and estimates of the damage of

carbon concentration on economic activity, allowing di¤erent degrees of distortions from re-

search subsidies, di¤erent estimates of the microeconomic elasticities in the R&D technology,

and di¤erent distributions of productivity gaps between clean and dirty technologies. Overall,

most of the main qualitative and quantitative features of optimal policy appear to be fairly

robust to a range of plausible variations.

Our model combines elements from four di¤erent lines of research (and is thus related

to each of these four lines). First, we build on the growing literature on quantitative general

equilibrium models of climate change, such as Golosov et al. (2011), Hassler and Krusell (2012),

Krusell and Smith (2009), Nordhaus (1994), Nordhaus and Boyer (2000), Nordhaus (2008),

and Stern (2007). We follow these papers in introducing a simple model of the carbon cycle and

the economic costs of carbon emissions in a general equilibrium model, and then characterizing

optimal policy. Second, we introduce endogenous and directed technological change along the

lines of Acemoglu (1998, 2002) in a model where producers have a choice between clean and

dirty production methods. In combining these two �rst lines of research, we are following

Acemoglu et al. (2012a) as well as several other papers listed in footnote 1 above. Third,

we develop a tractable but rich model of competition between dirty and clean technologies

building on the literature on step-by-step competition as in Harris and Vickers (1995), Aghion

et al. (2001), and Acemoglu and Akcigit (2012). Fourth, we model the microeconomics of

innovation, employment and output dynamics building on Klette and Kortum (2004), where

each �rm consists of a number of products and technologies (di¤erent from other applications,

technologies here are di¤erent from products because of the competition between clean and

dirty sectors).
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In estimating a general equilibrium model of �rm-level innovation and employment dy-

namics, we follow Lentz and Mortensen (2008) and Acemoglu et al. (2012b). We di¤er from

existing work in this area in three important respects, however. First, we combine this type

of estimation strategy with a model of clean and dirty technologies and estimate some of the

parameters of the R&D technology directly from microdata. Second, rather than focusing on

steady-state comparisons, we study non-steady-state dynamics, which is crucial for the ques-

tion of transitioning to clean technology. Third, we characterize optimal policies in such a

framework.

The remainder of the paper is organized as follows. Section 2 introduces our model and

characterizes the equilibrium. Section 3 describes the dataset we will use for estimation and

quantitative evaluation, outlines the di¤erent components of our estimation strategy, and

presents the estimates of some of the parameters we obtain from our micro data. Section

4 presents the simulated method of moments estimates of our parameters and discusses the

�t of the model. Section 5 quantitatively characterizes the structure of optimal environmental

policy. In this section, we also conduct a range of counterfactual exercises. Section 6 discusses

a range of robustness exercises intended to convey which sorts of assumptions and parameters

are important for the qualitative and quantitative results of the paper. Section 7 concludes.

2 Model

In this section, we present our baseline model. This is a simple dynamic general equilibrium

model, where �nal output combines intermediates produced either using a clean or dirty tech-

nology. The productivity of the dirty and clean technology for each intermediate is represented

by a quality ladder. Production is also subject to taxes, so pro�t-maximizing �nal good pro-

ducers choose whether to use clean or dirty intermediates as a function of the productivity

gap between the two and taxes. Research is directed towards clean or dirty technology, and

progresses both with incremental research increasing productivity by one rung on the quality

ladder and with occasional breakthrough research which enables the �rm to surpass the cur-

rent frontier technology. Research is conducted both by entrants and incumbent �rms which

already hold a portfolio of products and technologies. Finally, dirty technology contributes to

carbon emissions, which create potential economic damage. We next describe each module of

the model in turn.

2.1 Preferences and Endowments

We model an in�nite-horizon closed economy in continuous time. Since the consumer side is

not our focus, we simplify the discussion by modeling it with a representative household with
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a logarithmic instantaneous utility function. The lifetime utility is then

U0 =

Z 1

0
e��t lnCtdt; (1)

where Ct is the household�s consumption at time t and � > 0 is the discount rate. We assume

that the representative household consists of mass one of production workers and mass Ls of

�scientists� who will be employed in R&D activities. All workers supply one unit of labor

inelastically. The representative household owns all the �rms in the economy, so its problem

will be to maximize (1) subject to the following budget constraint

wut + w
s
tL

s +�t � Ct;

and the usual no Ponzi-game condition. Here �t is the total sum of corporate pro�ts net of

R&D expenses, wut and w
s
t are the wage rates (and thus wage incomes) of the production and

R&D workers.

Since the economy is closed, there is no physical capital, and intermediates and the R&D

sector use labor, aggregate consumption is equal to the production of the �nal good:

Ct = Yt:

2.2 Final Good Technology, Intermediate Production and Pricing

The �nal good is produced by combining a measure one of intermediates with an elasticity

of substitution equal to one. In addition, its production is negatively a¤ected by the amount

of atmospheric carbon concentration, which we denote by St. We follow the formulation

suggested by Golosov et al. (2011), which builds on earlier work by Mendelsohn et al. (1994)

and Nordhaus (1994, 2008), and assume

lnYt = �

�
St � �S

�
+

Z 1

0
ln yi;tdi; (2)

where �S > 0 is the pre-industrial level of the atmospheric carbon concentration, 
 � 0 is a

scale parameter, and yi;t is the quantity of intermediate good i. When 
 = 0, (2) gives the

standard (unitary elasticity of substitution) production function for combining intermediates

to produce a �nal good. When 
 > 0, levels of atmospheric carbon concentration above the

pre-industrial level reduce productivity with elasticity 
, for reasons discussed in Mendelsohn

et al. (1994), Nordhaus (1994, 2008) and Stern (2007).

A feature of (2), which will play a central role in our quantitative exercise, is worth noting:

the proportional cost of a unit increase in atmospheric carbon concentration is independent

of its current level. Though nonlinearities, or even major threshold e¤ects, are likely to be

present in the impact of atmospheric concentration on economic activity, this functional form

is not only in line with assumptions made by other economic approaches to climate change
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(e.g., Nordhaus, 1994, 2002, 2007, Nordhaus and Boyer, 2000, Stern, 2007, Golosov et al.,

2011), but also enables us to study the implications of carbon emissions from our economy,

with parameters estimated from the US and calibrated to US aggregates, without taking a

position on the path of carbon emissions on the rest of the world. Without this assumption,

the marginal cost of carbon emissions, and thus optimal policy, would strongly depend on

assumptions on the evolution of emissions from other countries.

Each intermediate i 2 [0; 1] can be produced with either a dirty or a clean technology,
and when it is produced with the clean (dirty) technology we denote it by yci;t (y

d
i;t). We will

sometimes refer to clean and dirty technologies as clean and dirty �sectors,�and we also use

the terms �intermediaries�and �product lines�interchangeably.

Firm f can produce intermediate i with either a clean or dirty technology (j 2 fc; dg) with
the following production function yji;t (f) = qji;t (f) l

j
i;t (f), where l

j
i;t (f) is the employment

of (production workers) by this �rm and qji;t (f) is the labor productivity of the technology

that this �rm has access to for producing with clean or dirty technology j in product line

i. In equilibrium, only �rms with the highest technology either in the clean or dirty sector

will produce, so we simplify this equation by suppressing �rm indices and with the implicit

convention that the labor productivity q always refers to the most advanced clean or dirty

technology, thus writing:

yji;t = q
j
i;tl

j
i;t:

Though only �rms with the most advanced technology for intermediate i within the clean

or dirty sector can ever produce it, because of taxes it is not necessarily the most advanced

technology between these two sectors that will always be active. In particular, there is a tax

at the rate � jt on sector (technology) j at time t, which implies that the marginal cost of

production is

MCji;t =

�
1 + � jt

�
wut

qji;t
, j 2 fc; dg and i 2 [0; 1] ;

where wut is the wage rate of production workers. We de�ne tax-adjusted labor productivity

as

~qji;t �
qji;t

1 + � jt
:

In equilibrium, only the technology with the lower marginal cost (inclusive of taxes)� or equiv-

alently the one with the higher tax-adjusted labor productivity� will produce. Summarizing

this, we have

produce intermediate i with technology j if ~qji;t > ~q�ji;t where j 6= �j 2 fc; dg :

We assume that if clean and dirty technologies have equal tax-adjusted labor productivities,
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each produces with probability 50% at any point in time.7 Thus, the tax-adjusted technology

level use in the production of intermediate i at time t can be written as

�qi;t =

�
~qdi;t if ~qdi;t � ~qci;t
~qci;t otherwise

:

Finally, we also assume that at the initial date t = 0, for each leading technology of quality

qji;0, there also exists an intermediate good of quality q
j
i;0=�, which ensures that markups in

the initial date will not exceed � (this will be guaranteed endogenously in subsequent dates).

2.3 Innovation, the Quality Ladder and Dynamics

Labor productivity for each intermediate (for each technology) evolves as a result of innovation.

Research is directed towards clean or dirty technologies. A successful innovation leads to

one of two types of innovation. The �rst is an incremental innovation, which takes place

with probability 1 � �; and the second is a breakthrough innovation, which takes place with
probability � (independently of all other events).

If research directed to sector j 2 fc; dg leads to an incremental innovation, then the in-
novator improves over the sector j technology of a randomly chosen intermediate. This is

incremental innovation in the sense that it enables the innovator to go up by one rung in the

quality ladder over producing technology, and we assume that each rung corresponds to an

improvement of � > 1. Consequently, labor productivity of technology j in intermediate i at

time t can be written as

qji;t = �
nji;t ;

where nji;t 2 Z+ is the e¤ective number of steps that this technology has taken since time
t = 0 (when all technologies are, by assumption, normalized to qji;0 = 1).

Relative productivity of dirty to clean technology in intermediate i at time t can be written

as
qdi;t
qci;t

= �ni;t

where

ni;t � ndi;t � nci;t 2 Z

is de�ned as the technology gap between dirty and clean sectors in product line i at time t.

In what follows we will need to keep track of the share of intermediates with technology gap

n 2 Z, and we denote this by �n;t 2 [0; 1] at time t.
7 In other models of this type, e.g., Acemoglu and Akcigit (2012), which of two �rms produces is immaterial.

But here, since one of them uses the dirty technology and thus will contribute to carbon emissions, we need to
specify exactly who produces in this case.
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Breakthrough innovations, on the other hand, enable the successful innovator to improve by

one rung over the frontier technology, even if this frontier is set by the alternative technology�

i.e., a breakthrough clean innovation will improve over the dirty technology even if the latter

is far ahead of the clean sector, thus allowing the clean sector to leapfrog the dirty one.

Therefore, conditional on an innovation in technology j for intermediate i between times t

and t+�t, the evolution of qji;t can be written as

qji;t+�t =

8><>:
�qji;t with probability 1 if qji;t � q

�j
i;t (incremental)

�qji;t with probability 1� � if qji;t < q
�j
i;t (incremental)

�q�ji;t with probability � if qji;t < q
�j
i;t (breakthrough)

:

Let zjt denote the aggregate innovation rate which is the sum of incumbents�and entrants�

innovation rates in technology j. The law of motion for the technology gap ni;t can then be

expressed as follows:

ni;t+�t =

8>>>>>>>><>>>>>>>>:

ni;t � 1 with probability (1� �) zct�t 8ni;t
ni;t + 1 with probability (1� �) zdt�t 8ni;t
�1 with probability �zct�t if ni;t > 0

ni;t � 1 with probability �zct�t if ni;t � 0
1 with probability �zdt�t if ni;t � 0

ni;t + 1 with probability �zdt�t if ni;t > 0
ni;t otherwise

Note that innovations here have a creative destruction element (e.g., Aghion and Howitt,

1992, Grossman and Helpman, 1991) because, by improving over an existing product typically

operated by another �rm, they transfer the leading-edge technology to the current innovator.

In what follows, for notational and computational tractability, we assume that the gross

tax rates are multiples of � such that 1 + � jt = �m
j
t . Since taxes are chosen by the social

planner, especially when � is not too large, this is without much loss of generality. Given this

assumption, we can write
1 + �dt
1 + � ct

= �mt ;

where

mt � md
t �mc

t ;

and thus tax-adjusted technologies can be written as

~qdi;t
~qci;t

=
qdi;t

1 + �dt

1 + � ct
qcit

= �ni;t�mt :

We will say that dirty is the leading (tax-adjusted) technology if ni;t > mt; the two technologies

are neck and neck if ni;t = mt; and clean is the leading technology otherwise.
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2.4 Firms, R&D and Free Entry

Following Klette and Kortum (2004), we de�ne a �rm as a collection of leading-edge technolo-

gies. Let ujf denote the number of intermediates where �rm f has the leading-edge technologies

in sector j 2 fc; dg (but these are not necessarily more advanced than the technologies avail-
able in the other sector �j). Again following Klette and Kortum (2004), we assume that ujf
captures the stock of knowledge of the �rm for further innovations with technology j 2 fc; dg.
In particular, we assume that �rms combine their knowledge stock ujf with scientists (R&D

workers) Hj in order to generate a Poisson �ow rate of Xj new innovations (in continuous

time) according to the following production function

Xj = �
�
Hj
�� �

uj
�1��

; (3)

where � 2 (0; 1) is the R&D elasticity with respect to scientists and � > 0 is a scale parameter.
Thus the variable cost of generating a �ow rate of Xj is simply wstu

�
xj
� 1
� �

� 1
� where xj �

Xj=uj is the innovation intensity per product line and wst is the wage rate of scientists. In

addition, R&D activities also require each �rm to hire a number of scientists per product line

(as �xed cost). We assume that, per product line, �rm f will need to hire FI;iu scientists where

FI;i;t 2 [(1� �)FI ; (1 + �)FI ] is an iid (across �rms and over time) draw with mean FI and
� 2 (0; 1).8 Hence, the total cost of R&D for �rm i performing R&D directed at technology

j 2 fc; dg at time t is

Ct
�
u; xj

�
= wstu

�
hj + FI;i;t

�
= wstu

��
xj
� 1
� �

� 1
� + FI;i;t

�
;

where hj � Hj=u is the average scientists hired per product line and the cost function is

indexed by time because of the wage rate of scientists.

Entrants can also undertake R&D directed to either sector. We assume that to do this

they need to hire FE � FI scientists, and this will lead to a �ow rate of innovation equal to

one. We denote the endogenously determined mass of entrants performing R&D directed to

technology j at time t by Ejt .

On the policy side, incumbents performing R&D for sector j receive a proportional gov-

ernment subsidy at the rate sjI;t 2 [0; 1], and entrants performing R&D for sector j receive a

subsidy at the rate sjE;t 2 [0; 1].
8This heterogeneity in �xed costs is necessary to make the dynamics (computationally) well behaved. Because

of �creative destruction�in these types of models, equilibrium path in which some types of �rms stop doing R&D
(as clean �rms will do without policy and dirty �rms under our optimal policy), there will be a discontinuous
behavior shortly before this point because creative destruction is expected to cease. Heterogeneity in �xed costs
smooths this transition.
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2.5 The Carbon Cycle

While clean intermediate production yci;t creates no carbon emission, dirty production y
d
i;t emits

� units of carbon per intermediate output. This implies that total amount of carbon emission

at time t is

Kt = �

Z 1

0
ydi;tdi: (4)

We follow Golosov et al. (2011) in assuming that the atmospheric carbon concentration St is

determined as follows

St =

Z t�T

0
(1� dl)Kt�ldl; (5)

where t = T is the �rst date when emission started and

dl = (1� 'P )
h
1� '0e�'l

i
is the amount of carbon emitted l years ago still left in the atmosphere. In addition, 'P 2 (0; 1)
is the share of emission that remains permanently in the atmosphere, (1� 'P )'0 2 (0; 1) is
the fraction of the transitory component that remains in the �rst period, and ' 2 (0; 1) is the
rate of decay of carbon concentration over time. As explained in Golosov et al. (2011), this is

a �exible speci�cation that approximates the more complex dynamics of carbon concentration

in the atmosphere used by Nordhaus (2008). Though considerably simpler, this speci�cation

fairly closely approximates the observed dynamics of atmospheric carbon concentration as we

show below.

2.6 Equilibrium

In this section, we characterize certain properties of the equilibrium path of this economy.

The economy at time t = 0 is characterized by a distribution of technology gaps between

clean and dirty sectors �n;0 for n 2 Z, and the equilibrium path will be de�ned for a given

sequence of taxes and subsidies. Then a dynamic equilibrium path is a sequence of inter-

mediate outputs, prices, innovation rates by incumbents and entrants, skilled and unskilled

wages, measures of entrants, growth rate of aggregate output, interest rate, and atmospheric

concentration, i.e.,
h
yji;t; p

j
i;t; x

j
I;t; x

j
E;t; w

s
t ; w

u
t ; E

j
t ; rt; St

i1
t=0
, such that, given sequences of poli-

cies, all �rms maximize pro�ts, skilled and unskilled labor markets clear, free entry conditions

hold (with complementary slackness), consumers optimize dynamically, and atmospheric car-

bon evolves according to the carbon cycle model presented above (i.e., (5)). To determine this

dynamic time path we also have to keep track of the distribution of sectors by technology gaps,

f�n;tg1n=�1.
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2.7 Prices and Pro�ts

Given the aggregate production function (2), which implies unit elastic demand for intermedi-

ates, the demand for intermediates at time t is

yi;t =
~Yt
pi;t
; 8i 2 [0; 1] ; (6)

where ~Yt � Yt exp
�


�
St � �S

��
is net aggregate output (net of environmental damage).

We now characterize equilibrium prices. As explained in the previous section, if the leading

technology for intermediate i at time t is qji;t, another �rm will have access to technology qji;t=�

for free. This clearly also applies to tax adjusted labor productivity, which is what is relevant

for production decisions: when the leading technology is ~qji;t, there is always a follower with

technology with ~qji;t=�. Thus, equilibrium markups can never exceed �. However, in equilib-

rium, there may not be any markup in some of the intermediates because of the competition

between clean and dirty technologies. In particular, intermediate i will be produced using

technology j 2 fc; dg only if there ~q�ji;t � ~qji;t. If ~q
�j
i;t < ~qji;t, the equilibrium markup will be �,

and if ~q�ji;t = ~qji;t, there will be zero markup. Therefore:

pji;t =

8<:
wut
~qji;t

if ~qji;t = ~q�ji;t
�wut
~qji;t

if ~qji;t > ~q�ji;t
: (7)

Now, combining (6) and (7), the output of intermediate i as a function of tax-adjusted labor

productivities output can be written as

yji;t =

8<:
~Y ~qji;t
wut

if ~qci;t = ~qdi;t
~Y ~qji;t
�wut

if ~qji;t > ~q�ji;t

: (8)

Then, the equilibrium pro�ts (gross of R&D expenditures), as a function of m and n; can be

expressed follows
�cn;t =

~Yt
��1
� �dn;t = 0 if n < m

�cn;t = 0 �dn;t =
~Yt
��1
� if n > m

�cn;t = 0 �dn;t = 0 if n = m

: (9)

2.8 Innovation Incentives

We now characterize innovation incentives, which are the only forward-looking part of �rm

behavior in our model. To simplify the exposition, we �rst assume that �rms are myopic and

maximize instantaneous (one-step ahead pro�ts) rather than discounted sum of pro�ts. This

enables us to provide analytical expressions for R&D decisions, clarifying the basic economic

forces. We will then turn to forward-looking maximization by �rms and show that exactly

the same expressions and intuitions apply, with the only exception that one term will then

12



be replaced by a solution to a Hamilton-Jacobi-Bellman (HJB) equation rather than being

explicitly given as in this subsection.

Not every successful innovation leads to pro�table production for two reasons. First, the

innovation might be in technology j which is behind technology �j, and thus may still not be
active even after the improvement in labor productivity. Second, even if it leads to production,

this might happen at zero markup if the tax-adjusted labor productivities are the same with

the two technologies. Clearly, innovation incentives will be determined by the probability of

generating positive pro�ts following innovation. We denote this probability for innovation

directed at sector j by �jt 2 [0; 1]. For dirty sector, this is

�dt � (1� �)
X

n�m
�n;t + �

�
I(m�0) + I(m>0)

X
n�m

�n;t

�
=

X
n�m

�n;t + �
�
1�

X
n�m

�nt

�
I(m�0);

where I(m�0) is the indicator function for the event m � 0.
The interpretation of this expression is as follows: If the innovation is incremental (which,

conditional on successful innovation, has probability 1 � �), then it will only be pro�table if
it builds on an intermediate technology where the dirty sector is ahead or neck and neck with

the clean sector which, given uniform random draws from the set of all intermediates, has

probability
P
n�m �n;t. Alternatively, with probability �, the innovating �rm will necessarily

be at least one step ahead of the competing technology (either the dirty sector is ahead or

with the breakthrough technology, it leapfrogs the clean sector). However, in this case, it

may leapfrog the clean technology but still not compete with it on the basis of tax-adjusted

productivity because of the higher tax on dirty production (i.e., because of a �carbon tax�). In

particular, if m � 0 (so that I(m�0) = 1), then there is no carbon tax (if anything there might
be a carbon subsidy), then it will certainly be at least one step ahead of the clean technology

and will be able to charge a markup. If, on the other hand, m > 0; then the innovation will

be pro�table only for intermediates where the technology gap is already su¢ ciently large for

the dirty sector to have higher tax-adjusted technology, which is in the sectors with n � m.
A similar reasoning leads to a probability of positive pro�t following clean innovation of

�ct � (1� �)
X

n�m
�n;t + �

�
I(m�0) + I(m<0)

X
n�m

�n;t

�
=

X
n�m

�n;t + �
�
1�

X
n�m

�n;t

�
I(m�0): (10)

Let us denote the expected value of a successful innovation in technology j by �vjt . Since

in this subsection we are assuming myopic behavior on the sides of �rms, this is equal to the

expected immediate (rather than discounted) pro�ts from a successful innovation given by

�vjt =
�jt (�� 1) ~Yt

�
: (11)
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Then, dropping the �rm subscript i (in FI;i;t), the maximization problem of a �rm with the

leading-edge technology in uj intermediates in sector j 2 fc; dg can be written as:

max
Xj
I;t�0

n
Xj
I;t�v

j
t �

�
1� sjI;t

�
wst

h
H
�
Xj
I;t; u

j
�
+ I

(Xj
t>0)

ujFI;t

io
; (12)

where H
�
Xj
I;t; u

j
�
denotes the number of scientist hired by a �rm that has uj product lines

and innovates at the rate Xj
I;t: In this expression, the indicator function allows us to turn o¤

the �xed costs of R&D when the �rm chooses not to perform any R&D activities. Dividing this

objective function by uj , the maximization problem of a �rm �per leading-edge technology�

(i.e., expression (12) divided by the number of products in which the �rm has the leading-edge

technology in sector j) is

max
xjI;t�0

n
xjI;t�v

j
t �

�
1� sjI;t

�
wst

h
h
�
xjI;t

�
+ I

(xjI;t>0)
FI;t

io
: (13)

where h
�
xjI;t

�
� H

�
Xj
I;t; u

j
�
=uj is de�ned as the average number of scientists hired and

xjI;t � X
j
I;t=u

j is the average innovation intensity. Using the R&D production function de�ned

in (3) ; equilibrium innovation rate for j 2 fc; dg can be expressed as

xjI;t = I(xjI;t>0)

0@ �vjt ��
1
��

1� sjI;t
�
wst

1A
�

1��

: (14)

A number of important conclusions follow from (14):

1. Higher net output, higher markups and lower scientist wages increase research e¤ort as

should be expected.

2. Subsidies to research increase research e¤ort. This will be important in encouraging clean

innovation by means of research subsidies.

3. Through the �jt�s, carbon taxes increase clean research e¤ort (and reduce dirty research

e¤ort). This can be seen by considering higher values of m in (10), which given the dis-

tribution of technology gaps, increases �ct , because production shifts from dirty to clean

technologies (and neck-and-neck sectors shift to positive markups for clean technolo-

gies). This shows that just carbon taxes may be su¢ cient to encourage clean innovation

and thus a transition to clean technology. Whether they will in fact be su¢ cient is an

empirical and quantitative question we will try to address below.

4. Again through the �jt�s, we can also see the path-dependent nature of innovation. When

there are large technology gaps between dirty and clean,
P
n�m �n;t will be very small,

and thus �ct will be small (and �
d
t will be high), discouraging clean innovation and
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encouraging dirty innovation. But if clean innovation can be maintained for a while,

then
P
n�m �nt will increase, and so will �

c
t (while �

d
t declines). Thus clean innovation

will naturally self-reinforce over time. To the extent that
P
n�m �n;t changes only slowly,

this will also be a slow process.

2.9 Free Entry and Labor Market Clearing

The previous subsection characterized the R&D decisions of the incumbents (as a function

of the state of the economy and policies). The other component of R&D, creating demand

for scientists, is from entrants. With a similar reasoning to the pro�tability of the R&D of

incumbents, the free entry condition for entrants for technology j 2 fc; dg can be written as

max
xjE;t�0

n
xjE;t�v

j
t �

�
1� sjE;t

�
wst

h
h
�
xjE;t

�
+ FE

io
� 0; (15)

with this condition holding as equality if Ejt > 0. Hence, the innovation rate by entrants is

xjE;t = I(xjE;t>0)

0@ �vjt ��
1
��

1� sjE;t
�
wst

1A
�

1��

for j 2 fc; dg : (16)

Inspection of (15) establishes that at time t, there can be positive entry into technology j

only if the �policy-adjusted�value of innovation is higher in sector j than in sector �j. In other
words, entrants will direct their R&D to the clean technology if �vct=

�
1� scE;t

�
> �vdt =

�
1� sdE;t

�
and to the dirty technology if the reverse inequality holds. We also adopt the tiebreaking rule

that if �vct=
�
1� scE;t

�
= �vdt =

�
1� sdE;t

�
, then half of the entrants will direct R&D to each sector.

Therefore, denoting the total number (measure) of entrants at time t by Et, we have that the

number of entrants with technology directed to sector j is given by

Ejt =

8>>><>>>:
Et if �vjt =

�
1� sjE;t

�
> �v�jt =

�
1� s�jE;t

�
0 if �vjt =

�
1� sjE;t

�
< �v�jt =

�
1� s�jE;t

�
Et=2 if �vjt =

�
1� sjE;t

�
= �v�jt =

�
1� s�jE;t

� :

A comparison of equations (14) and (16) shows, conditional on entry an entrant�s innovation

rate (directed to sector j 2 fc; dg) will only be di¤erent from an incumbent�s in (14) because

of di¤erential subsidies.

It is also useful to inspect the R&D to sales relationship implied by our model. Suppose

that free entry condition holds for entry directed at technology k 2 fc; dg : Conditional on
investing in R&D, xjI;t > 0; the equilibrium R&D to sales ratio (for j 2 fc; dg) would be:

R&Dji;t

Salesji;t
= �� (1� �)1�� �� 1

�

�kt
1� skE;t

�F
�(1��)
E

264
0@�jt
�kt

�
1� skE;t

�
�
1� sjI;t

�
1A

1
1��

�

1� �FE + FI;i;t

375 :
15



Note that higher pro�tability of R&D in the sector for which the free entry condition holds

increases the R&D to sales ratio of that sector, but may reduce it in the other sector. The

impact of �xed cost requirements of incumbents on R&D to sales ratio result is positive.

However, the impact of the �xed cost of entry is ambiguous. On the one hand, it reduces the

equilibrium wage, and thus R&D expenditure. On the other, it increases labor requirements,

increasing R&D expenditures. The interplay of these two forces makes R&D to sales ratio

non-monotonic in the �xed cost for entrance. These di¤erent impacts of the �xed cost for

incumbents and entrants will enable us to identify both parameters in the estimation.

The labor market clearing condition for scientists can be written as

Ls =
X

j2fc;dg

266664
 �

�vjt ��

(1�sjE;t)wst

� 1
1��

+ FE

!
Ejt

+
R 1
0 I(xjit>0)

 �
�vjt ��

(1�sjE;t)wst

� 1
1��

+ FI;i;t

!
di

377775 : (17)

This equation shows that the demand for scientists is decreasing in the skilled wage wst and

will be higher when R&D is more pro�table and is subsidized more heavily.

We next characterize labor market clearing for production workers. From the equilibrium

production decision in (8) the unskilled labor demand is

li;t =

8<:
~Yt

(1+�ji)wut
if ~qji;t = ~q�ji;t

~Yt
(1+�ji)�wut

if ~qji;t 6= ~q�ji;t

Substituting the optimal quantities (8) into the �nal good production function (2),

wut =
�Qt�

�
t ; (18)

where
�Qt � exp

�Z
ln �qitdi

�
is the quality index of active tax-adjusted labor productivities, and

��t = �
�(1��m;t)

is an inverse function of equilibrium markups (where �m;t refers to the fraction of product lines

where the lead of dirty is exactly equal to m steps, so that clean and dirty are neck and neck

in tax-adjusted productivity). In particular, ��t takes the value �
�1 when all intermediates

charge a markup (which is the case when �m;t = 0) and the value 1 when no intermediates

charger markup (which is the case when �m;t = 1). The labor market clearing for production

workers can then be expressed as

1 =
~Yt
wut

�
�m;t
2

�
1

1 + �dt
+

1

1 + � ct

�
+
1

�

�P
n<m �n;t
1 + � ct

+

P
n>m �n;t

1 + �dt

��
:
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This equation shows both the impact of taxes on labor demand (both types of taxes reduce

labor demand and thus wages) and the distribution of technology gaps (because these a¤ect

markups). It also shows that if there were only one type of technology, an increase in the tax

rate would have no impact on production, just reducing the unskilled wage rate. This is no

longer true, however, with two types of technologies, because a tax on dirty technology, for

example, would also change the prices of intermediates produced by dirty technology relative

to those produced by clean technology, thus impacting production.

This equation also enables us to express aggregate output as a function of the quality index

of active tax-adjusted labor productivities as follows

Yt = exp
�
�

�
St � �S

��
~Yt =

�Qt�
�
t


�t exp
�


�
St � �S

�� ; (19)

where


�t �
�m;t
2

�
1

1 + �dt
+

1

1 + � ct

�
+
1

�

�P
n<m �n;t
1 + � ct

+

P
n>m �n;t

1 + �dt

�
is an adjustment for labor demand coming both from taxes and markups.

2.10 Dynamics and Equilibrium Redux

Equilibrium dynamics are determined by changes in the interest rate and the evolution of

technologies and technology gaps. Household maximization leads to the usual Euler equation

gt = rt � �; (20)

where gt is the growth rate of consumption and rt is the interest rate at time t (and in addition

we impose the usual transversality condition).

The evolution of technology gaps �n;t can be derived as follows. Let us denote the aggregate

innovation rate in technology j as zjt �
�
1 + Ejt

�
xjt and the total innovation rate as zt � zdt+zct :

Then, the �ow equations for the distribution of technology gap n > 1 can be expressed as

_�n>1;t = z
d
t �n�1;t + (1� �) zct�n+1;t � zt�n;t:

The change in the share depends on the di¤erence between in�ows and out�ows. There will

be in�ows into state n from n� 1 when a dirty innovation occurs and from n+1 when a clean

innovation occurs without leapfrogging. On the other hand, an out�ow will happen with both

clean or dirty innovation as it will bring the state into n + 1, n � 1 or �1 depending on the
innovation type. We repeat the same reasoning for n � 1 below:

_�1;t = zdt �0;t + (1� �) zct�2;t + �zd�c�t � z�1;t
_�0;t = (1� �) zd��1;t + (1� �) zct�1;t � z�0;t (21)

_��1;t = zc�0;t + (1� �) zdt ��2;t + �zct
X
n>0

�n;t � z��1;t

_�n<�1t = zc�n+1;t + (1� �) zdt �n�1;t � z�n;t:
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Total dirty intermediate production at time t, Y dt , which creates pollution is given as

Y dt =

Z
ydi;tdi =

Z
i2�m

ydi;t
2
di+

X
n>m

Z
i2�n

ydi;tdi (22)

=
~Yt�

1 + �dt
�
wut

"
1

2
Qdm;t +

1

�

X
n>m

Qdn;t

#
;

where we break up the productivity aggregates by step size di¤erential n de�ning (with a slight

abuse of notation where i 2 �n denotes intermediates where the technology gap is n steps):

Qdn;t �
Z
i2�n

qdi;tdi:

We now summarize the dynamic equilibrium path using the equations we have derived in

this section. For any given time path of policies
h
� jt ; s

j
I;t; s

j
E;t

i1
t=0
; a dynamic equilibrium path

is characterized by time path ofh
yji;t; p

j
i;t; x

j
I;t; x

j
E;t; w

s
t ; w

u
t ; E

j
t ; f�n;tg1n=�1; fQdn;tg1n=�1; gt; rt; St

i1
t=0

such that [i] yji;t and p
j
i;t maximize pro�ts as in (7) and (8) ; [ii] x

j
I;t and x

j
E;t solve incumbent�s

and entrant�s R&D decision as in (14) and (16) ; [iii] wut clears unskilled labor market as in

(18) ; [iv] ws is determined from the free entry condition (15) when there is positive entry and

from skilled labor market clearing (17) when there is no positive entry; [v] Ejt is determined

from the skilled labor market clearing (17) when there is positive entry; [vi] technology gap

shares {�n;tg1n=�1 satisfy the set of �ow equations (21) ; [vii] total productivity of the sectors

with n-step gap Qdn;t evolves according to the innovation rates in (14) and (16) ; [viii] the

growth rate is consistent with the innovation rates xjI;t and x
j
E;t; and [ix] the interest rate

satis�es the Euler equation (20), and [x] St is given by (5).

2.11 Full Model

We now relax the assumption of myopic �rms and assume that �rms maximize their discounted

pro�ts (and this full model will be used in our quantitative analysis also).

Let ~nj �
h
nj1; :::; n

j
u

i
denote the vector of product lines where the �rm in question holds

the leading-edge technology (a total of u = ujt of them for this �rm) and n
j
i the technology gap

compared to technology �j within the same product line. Let ~nj�i denote the same vector ~nj

without its ith element nji : Then the value of a �rm with a portfolio of products given by ~nj

then satis�es the HJB equation:

rV j
~nj ;t

� _V j
~nj ;t

(23)

=
Xu

i=1

�
�jni;t + z

j
t

�
V j
~nj�i

� V j
~nj ;t

�
+ z�jt (1� �)

�
V j
~nj�i[fnji�1g;t

� V j
~nji ;t

�
+ z�jt �

�
V j
~nj�i;t

� V j
~nji ;t

��
+

Z
max
xjt�0

�
ujtx

j
t

�
V j
~nj[fnju+1g;t

� V j
~nj ;t

�
�
�
1� sjI;t

�
ujtw

s
t

��
xjt

� 1
�
�
� 1
� + I(xdn;t>0)FI;t

��
dFI;t:

18



The interpretation is straightforward. The right-hand side includes the pro�ts generated from

u product lines, which is given by the �rst term. In addition, at the �ow rate rate zjt ; each

product line i will experience an innovation by another �rm from the same technology j in

which case i is taken out of �rm�s portfolio (so that the �rm�s portfolio becomes ~nj�i). If

instead production line i experiences an innovation from the alternative technology �j, which
happens at the rate z�jt , then there are two possibilities: either the innovation is incremental

(probability (1� �)) and the current incumbent will still continue with its production in which
case the technology gap will be narrowed by one step (so that nji = n

j
i � 1) or the innovation

might be drastic (probability �), in which case the �rm will lose this product line (again

reducing its portfolio to ~nj�i). Finally, the �rm invests in R&D itself and innovates at the

�ow rate Xj
t = ujtx

j
t , and the option value of this R&D (inclusive of costs) is added as the

second line of the right-hand side, with the integral taking care of the fact that �xed costs are

stochastic. (Note in particular that when it is successful, the �rm adds a new product line so

that its portfolio becomes ~nj [ fnju+1g).
The next lemma provides a convenient re-expression of this Bellman equation in per product

terms:

Lemma 1 Equation (23) can be re-expressed as V j
~nj ;t

= ~Yt
Pu
i=1 v

j
ni;t

where

�vjni;t � _vjni;t = �
j
ni � z

j
t v
j
ni;t

+ z�jt (1� �)
�
vjni�1;t � v

j
ni;t

�
+ z�jt �

�
vj�1;t � v

j
ni;t

�
(24)

+

Z
max
xjt�0

�
xjt �v

j
t �

�
1� sjI;t

�
~wst

��
xjt

� 1
�
�
� 1
� + I(xdn;t>0)FI;t

��
dFI;t:

and �vjt � Eiv
j
ni;t
:

Proof of Lemma 1. Substituting (24) into (23), we obtain

r ~Yt
Xu

i=1
vjni;t �

d

dt
~Yt
Xu

i=1
vjni;t � ~Yt

Xu

i=1
_vjni;t

=
Xu

i=1

h
~Yt�

j
ni � z

j
t
~Ytv

j
ni;t

+ z�jt (1� �)
�
~Ytv

j
ni�1;t � ~Ytv

j
ni;t

�
+ z�jt �

�
~Ytv

j
�1;t � ~Ytv

j
ni;t

�i
+

Z
max
xjt�0

�
uxjt

~Yt�v
j
t �

�
1� sjI;t

�
uwst

��
xjt

� 1
�
�
� 1
� + I(xdni;t>0)

FI;t

��
dFI;t:

where

~wst �
wst
~Yt

and
�cn =

��1
� �dn = 0 if n < m

�cn = 0 �dn =
��1
� if n > m

�cn = 0 �dn = 0 if n = m

:
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Then this can further be simpli�ed to
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j
t �

�
1� sjI;t

�
~wst

��
xjt

� 1
�
�
� 1
� + I(xdn;t>0)FI;t

��
dFI;t:

where we used the fact that d
dt
~Yt = gt ~Yt in the �rst line. Next, we eliminate ~Yt throughout and

use the Euler equation (20) ; rt � gt = �; to establish the desired result.
An important implication is that incumbent innovation rates per product line will be in-

dependent of the portfolio of the incumbent and given by

xjt = I(xjI;t>0)

0@ �vjt ��
1
��

1� sjI;t
�
~wst

1A
�

1��

for j 2 fc; dg ;

which can be easily veri�ed to be identical to (14) except that now �vjt is given as a solution to

(24) :

We can now describe the full dynamic equilibrium path of this economy, which will be

essentially identical to the equilibrium path with myopic �rms, with �vjt given as the solution

to the HJB equation (24).

For any given time path of policies
h
� jt ; s

j
I;t; s

j
E;t

i1
t=0
; a dynamic equilibrium path is char-

acterized by time path ofh
�vjt ; y

j
i;t; p

j
i;t; x

j
I;t; x

j
E;t; w

s
t ; w

u
t ; E

j
t ; f�n;tg1n=�1; fQdn;tg1n=�1; gt; rt; St

i1
t=0

such that �vjt � Eiv
j
ni;t
, and each vjn;t satis�es (24). In addition: [i] y

j
i;t and p

j
i;t maximize pro�ts

as in (7) and (8) ; [ii] xjI;t and x
j
E;t solve incumbent�s and entrant�s R&D decision as in (14)

and (16) ; [iii] wut clears unskilled labor market as in (18) ; [iv] w
s is determined from the free

entry condition (15) when there is positive entry and from skilled labor market clearing (17)

when there is no positive entry; [v] Ejt is determined from the skilled labor market clearing

(17) when there is positive entry; [vi] technology gap shares {�n;tg1n=�1 satisfy the set of �ow

equations (21) ; [vii] total productivity of the sectors with n-step gap Qdn;t evolves according to

the innovation rates in (14) and (16) ; [viii] the growth rate is consistent with the innovation

rates xjI;t and x
j
E;t; and [ix] the interest rate satis�es the Euler equation (20), and [x] St is

given by (5).

3 Empirical Strategy and Data

Our model has 14 parameters/variables to be determined:�
�; �S; 
; '; '0; 'P ; �; L

s; �; �; �; �; FI ; FE
	
:
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In addition, the initial distribution of technology gaps between clean and dirty technologies,

f�0tg1n=�1, needs to be determined. It is useful to note that, as will become clearer below,
given f�ntg1n=�1, estimation of the remaining parameters can be done without knowledge of
taxes and subsidies, and also without any information on �S; 
; '; '0, and 'P . These become

relevant only for our policy analysis. Nevertheless, here we specify our choices for all these

parameters.

We proceed in four steps. First, we externally calibrate some of the parameters, in par-

ticular the parameters of the carbon cycle and the discount rate. In all, the parameters

�; �S; 
; '; '0; 'P , and � are taken from external sources. Second, we directly estimate Ls; �;

and � from microdata. Third, we choose the initial distribution of technology gaps to match

the distribution of patents between �rms innovating mostly with clean and mostly with dirty

technologies as we explain below. Finally, we estimate the remaining parameters �; �; FI and

FE using simulated method of moments, with moments being selected to model the �rm-level

R&D behavior, growth rates, and entry/exit rates for the energy sector as we describe below.

The model performs well and is able to replicate these moments reasonably closely.

Throughout our focus is on the energy sector, the behavior of which has motivated our

theoretical model. The energy sector is de�ned as �rms involved in the sourcing, re�nement and

delivery of energy inputs for residential and industrial applications (e.g., oil and gas, electricity),

�rms that provide complementary inputs and equipment into this energy-production process

(e.g., drilling equipment, power plant technologies), and �rms that interface with the energy

inputs for residential and industrial use (e.g., motor manufacturers). As such, our group of 1576

�rms that make up our sample includes oil and gas producers, mining and exploration �rms,

engine manufacturers, power companies building upon multiple techniques, energy equipment

manufacturers, and similar.9

The data we use for estimation comes from the Census Bureau�s Longitudinal Business

Database and Economic Censuses, the National Science Foundation�s Survey of Industrial

Research and Development, and the NBER Patent Database. We design our sample around

innovative �rms in the energy sector that are in operation during the 1975-2004 period.

3.1 External Calibration

We choose �S; 
; '; '0; 'P , and � to link our model to the carbon cycle and its impact on ag-

gregate output following Golosov et al.�s (2011) approach. This approach takes into account

the current level of carbon stock and its increase since pre-industrial times; the rate at which

new emissions enter the atmosphere, the terrestrial biosphere or shallow oceans, and the deep

oceans; how that movement and the various reservoirs of carbon in�uence the earth�s tem-

perature; and how higher temperatures and environmental damage hurt the economy. This
9We exclude approximately 50 non-pro�t research centers and similar entities to match our model�s focus on

pro�t-seeking �rms. Our estimations below are robust to retaining these entities.
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work builds upon prior work in environmental economics (e.g., Nordhaus 2008, Nordhaus and

Boyer 2000), but is more �exible in allowing non-linear absorption of atmospheric carbon, but

does not allow any delay on the impact of this carbon content on economic outcomes and tem-

perature changes (which result from di¤erent rates at which oceans change temperature, for

example) and does not separately keep track of the dynamics of the atmospheric concentration

of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O).

Our value of the pre-industrial stock of carbon dioxide in the atmosphere �S is 581 GtC

(gigatons of carbon). To model how emission increases the atmospheric stock of CO2, we

de�ne the three parameters ';'0; and 'P as follows. First, 'P is the portion of new emissions

that will remain in the atmosphere for a very long time, likely for thousands of years, and

estimates of this parameter from IPCC (2007) and Archer (2005) are about 20%. The other

two parameters, ' and '0, govern the short- and medium-term movement of the emitted carbon

that will not become part of this very long duration stock in the atmosphere. These emissions

in�uence the earth�s temperature over short horizons, but they are ultimately absorbed into

the deep oceans. To identify these parameters, we utilize the 30 year half-life of carbon and

match the carbon stock evolution under emissions during the 1900-2008 period. We use the

following formula to determine the atmospheric carbon concentration St in every year during

1900-2008 period

St =

Z t�1900

0
(1� dl)Kt�ldl + S1900; (25)

where

dl = (1� 'P )
h
1� '0e�'l

i
The emission data for fKtg2008t=1900 is shown in Figure 1 below.
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Figure 2 shows the �t of (25) which yields ' = 0:0313 and '0 = 0:7661. The dynamics implied

by equation (5) at these parameter values match the actual evolution of atmospheric carbon

over the past century very well as shown by the close correspondence between the solid blue line
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representing the data and the dashed red line corresponding to the model-implied atmospheric

concentration in Figure 2.

Our damage function also follows Golosov et al. (2011) and we choose the 
 parameter in

our baseline policy analysis to be the same as theirs, 5.3 x 10�5 GtC�1,10 though this number

may be too low, particularly because, in contrast to their paper, we are not allowing policy to

adjust to new information about damages as this becomes available, so the certainty equivalent

average of estimates rather than arithmetic average might be more appropriate. Section 6.1

provides robustness checks with higher values of 
:

The � parameter is chosen to link current emissions levels to the baseline output level of the

model. In doing so, we are making a simplifying assumption that the emission of our economy

can proxy for the emission of the entire US economy. As suggested in Golosov et al. (2011),

the modeling of the carbon cycle and its impact on production has the attractive feature that

the social value of marginal emissions is the same (relative to output). This implies that our

results would be essentially unchanged if we take a future path of emissions from the rest of the

world, with the only di¤erence being that the implied temperature changes we depict below

would no longer apply (and we would need to talk about incremental temperature changes due

to the US energy sector). It is also worth noting that our model and this modeling strategy

certainly abstract from several important aspects of international cooperation or competition

that impact climate change outcomes (e.g., Hassler and Krusell 2012).

Finally, we report all of our results for a single private discount rate � = 1% and two values

of the social discount rate 1% and 0:1%. The �rst is � = 1%, which is close to the 1.5% chosen

by Nordhaus in his models, and the second is � = 0:1% used by Stern (2007), on the basis that

with a higher discount rate there is almost no weight put on the welfare of future generations.

3.2 Sample Construction and Data Sources

We combine several datasets for this study. The NBER Patent Database and the NSF Survey

of Industrial Research and Development are the backbones for our study, with additional

information and details being collected from the Longitudinal Business Database and the

various Economic Censuses conducted by the Census Bureau. We introduce each dataset as

we describe the steps in our sample construction.

3.2.1 Patent Data for Energy Sector

Our �rst data source is the individual records of all patents granted by the United States

Patent and Trademark O¢ ce (USPTO) from January 1975 to May 2009. This database was

10This approach provides a fairly good approximation of the damage function developed in Nordhaus (2007),
who incorporates a typical estimate that a doubling of the stock of atmospheric carbon leads to a 3�C increase
and then a proportional damage function of how global temperature increases a¤ect the economy. Golosov et
al. (2011) show a close correspondance of these functions over relevant temperature ranges.
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�rst developed by the NBER and was subsequently extended by HBS Research to include

patenting in recent years. Each patent record provides information about the invention and

the inventors submitting the application. Hall et al. (2001) provide extensive details about

these data, and Griliches (1990) surveys the use of patents as economic indicators of technology

advancement. We collect from this database the patents that are 1) �led by inventors living

in the United States at the time of the patent application, and 2) assigned to industrial �rms.

In a representative year, 1997, this group comprised about 77 thousand patents (about 40% of

the total USPTO patent count in 1997).

We then identify patents that are related to the energy sector. This is a key step for

our study, and we outline our approach in detail. We use patent technology codes to iden-

tify patents related to the energy sector. The technology codes are the most disaggregated

level of the USPTO�s classi�cation scheme and number over 150,000. This is important as

energy-sector patents are spread out over multiple patent classes (the next higher level of the

classi�cation system with about 450 groups). Two examples related to solar energy are �Power

Plants/utilizing natural heat/Solar� and �Stoves and Furnaces/Solar heat collector�. More-

over, we describe later how these patenting technologies are also used to classify �rms as being

primarily clean- or dirty-energy �rms. This separation can only be done at the technology

level as the patent class level includes both types (e.g., �Power Plants� includes technologies

for coal-powered plants too).

We identify relevant technology codes through four steps. First, we adopt the prior clas-

si�cations developed in a study of alternative energy by Popp (2002) and Popp and Newell

(2012). Popp and Newell�s (2012) work is particularly helpful in that they provide classi�ca-

tions into various types of energy technologies that we discuss in greater detail below. Given

this authoritative prior work, we also report results below for our key parameters that just use

their classi�cation system.

We are interested, however, in several technologies (e.g., nuclear power) not considered

by Popp and Newell (2012). We thus extend their list through three additional steps. Our

second step utilizes resources from the OECD�s work to identify environment-related technolo-

gies. OECD (2011) lists such technologies using the International Patent Classi�cation (IPC)

scheme, which some observers believe is better designed to identify and group environment-

related technologies than the USPTO classi�cation framework. We use concordances between

the IPC and USPTO framework to identify additional technologies to be included.

The third step utilizes information on energy-related R&D data from the NSF Survey of

Industrial Research and Development that we describe in greater detail next. For the �rms

identi�ed in this survey to be conducting energy-related R&D, we list their patent technology

codes and frequency. We then manually search the 600 most-frequent codes to identify if they

are energy related. In a related fourth step, we also manually search the USPTO database
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using key words like �Coal�and �Solar�to determine relevant technologies. This identi�cation

process constructs a pool of patents related to the energy sector. As a representative year,

1997, our energy-related patents comprised 7.6% of the total US patent count.11

3.2.2 Operating Data for Energy Sector

Our next step links our energy patent data to �rm-level operating data collected by the US

Census Bureau. The Longitudinal Business Database is a business registry that contains annual

employment levels for every private-sector establishment in the United States with payroll from

1976 onward. We also employ Economic Censuses that are conducted every �ve years by sector

of the economy; these censuses provide additional plant and �rm operation data (e.g., sales).

Sourced from US tax records and Census Bureau surveys, these micro-records document the

universe of establishments and �rms, making them an unparalleled laboratory for studying our

model of �rm dynamics in the US energy sector.

We match the patent data to these operating data using �rm-name and geographic-location

matching algorithms. The basic concept in these algorithms is to identify Census Bureau �rms

that have similar names to USPTO patent assignees and that have establishments in the same

geographic area as where inventors of the patents are located.12 This linkage also accomplishes

a related step of aggregating patent assignees to �rms, as some �rms �le patents through mul-

tiple patent assignee codes. This aggregation is due to the Census Bureau�s establishment-�rm

hierarchy, as we observe establishment-level names within multi-unit �rms that help identify

subsidiaries and major corporate restructurings like mergers and acquisitions, and through the

name-matching process that consolidates slight name variants over patent assignees.

We focus our sample on the years in which Economic Censuses are conducted, speci�cally

every �ve years starting in 1977 and ending in 2002. We adopt this focus for several reasons:

1) the operating data are often best measured around these years due to heightened Census

Bureau resources, 2) some speci�c variables from the Economic Censuses are only available at

those �ve-year marks, and 3) our innovation data are most appropriately considered over short

time periods. The third rationale is due, for example, to lumpiness in �rm applications for

patents; as we describe next, our R&D expenditures data are also often collected biannually.

We thus measure variables using the average of observed values for �rms in �ve-year windows

surrounding these Economic Census years (e.g., 1985-1989 for the 1987-centered period). We

have six time periods covering the 30 year interval of 1975-2004.

11Energy-related patents account for 5%-15% of US patents over our sample period, with a declining share
in recent years; in absolute terms, patent counts for the energy sector are stable or growing throughout the
period. The declining share is partly due to the sector not growing as fast as others, and partly due to external
changes over time to allow for patents to be made in sectors that traditionally did not patent, especially software
patents.
12The algorithms are described in detail in an internal Census Bureau report by Ghosh and Kerr (2010). This

patent matching builds upon the prior work of Balasubramanian and Sivadasan (2011) and Kerr and Fu (2008).
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3.2.3 R&D Data for Energy Sector

We next utilize the Census Bureau�s internal linkages to collect information on R&D expen-

ditures from the NSF�s Survey of Industrial Research and Development (R&D Survey). The

R&D Survey is the US government�s primary instrument for surveying the R&D expenditures

and innovative e¤orts of US �rms. This is an annual or biannual survey conducted jointly by

the Census Bureau and NSF. The survey includes with certainty all public and private �rms,

as well as foreign-owned �rms, undertaking over a minimum threshold of R&D expenditure in

the United States. For most of our sample period, this expenditure threshold is one million

dollars of R&D within the US. The survey frame also sub-samples �rms conducting less than

the certain expenditure threshold. These micro-records begin in 1972 and provide the most

detailed statistics available on �rm-level R&D e¤orts. In 1997, 3,741 �rms reported positive

R&D expenditures that sum to $158 billion. Foster and Grim (2010) and Akcigit and Kerr

(2010) discuss these data in greater detail.

The R&D Survey provides us with information on many �rms�R&D expenditures and

employments of science and engineering workers. We use the data, along with the patenting

of the �rm, to calculate the innovation production function for the sector (e.g., the � and �

parameters). We describe these calculations below, and for these calculations we only utilize

�rm observations for which we always observe reported data on R&D expenditures or scientist

counts� meaning that these calculations use only �rms that conduct more than the minimum

threshold of one million dollars in R&D or are sub-sampled completely. While this might

present an issue for sectors like consumer internet start-ups, this is not very restrictive for the

supply side of the energy sector given the large amounts of R&D expenditures required by

many start-ups.

For our broader moments on �rm dynamics, this minimum threshold creates a challenge,

however, for the consistent calculation of the entry margin and growth rates. Our model

requires that �rms be innovative from the start of their lives, and thus an innovative �rm that

falls below threshold value in its �rst period would be inappropriately dropped if we restricted

the sample only to �rms for which we always observe R&D expenditure. By contrast, the

patent data are universally observed. To ensure a complete distribution, we thus use patents

to impute R&D values for �rms that are less than the certainty threshold and not sub-sampled.

Overall, our moments combine the R&D and patent data into a single measure of innovation

(in R&D terms) that accords with the model for the characterization of �rm dynamics in the

energy sector. As the R&D expenditures in these sub-sampled cases are low (by de�nition),

this imputation choice versus treating unsurveyed R&D expenditures as zero expenditures

conditional on patenting is not very important. The �rm does not need to conduct R&D

or patent in every year of the initial �ve-year window, but the �rm must do one of the two
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activities at least once.13

To summarize, the key idea is that our sample requires that a �rm either patent or have

measured R&D in the �rst period of its life. If the �rm is an incumbent in the initial 1975-

1979 period, it must have either a patent or measured R&D. Our sample does not condition

on innovative activity before 1975-1979. Thus, these incumbents may have had some point in

their past when they did not conduct R&D or patent. Our model allows for �rms to transition

out of R&D, and thus we include �rms that quit being innovative. On the other hand, we

do not consider non-innovative incumbent �rms starting to do innovation. As the probability

that an existing, non-innovative �rm commences R&D or patenting over the ensuing �ve years

(conditional on survival) is only about 1%, this exclusion is reasonable.14 As one exception

to this sample construction, we only estimate the key innovation production function over

�rms that have continually observed R&D expenditures (so that imputation procedures are

not required).

3.2.4 Sample Inclusion Rules and Sample Size

These procedures de�ne the base pool of innovative �rms in the energy sector. To be retained

in our �nal sample, the �rm must meet two additional requirements. The �rst is that the �rm

has positive employment and obtains three or more patents in the energy sector during the

1975-2004 period. These are not very high hurdles given our purpose, and we thus exclude

entities that only obtain one or two energy-related patents over their lifetime. Second, and

more important, we also require that 10% of the �rm�s total patenting be in energy-related

�elds. This is an important hurdle as it excludes innovative �rms that are not very active in

the sector. The 10% bar is more substantial than it may initially appear as we have been fairly

conservative in terms of de�ning energy-sector patents.

Thus, our compiled dataset includes innovative �rms in the energy sector from 1975-2004.

A record in our dataset is a �rm-period observation that aggregates over the �rm�s di¤erent

establishments. We have 6228 observations from 1576 �rms. While focused on a single sector,

our �rm panel contains 19% of all US R&D industrial expenditures during the 1975-2004 pe-

riod. The panel accounts for about 70% of industrial patents for the energy sector in the United

States. Across all activity in the economy, our sample typically account for 1% of establish-

ments, 5% of employment, and 10% of sales. In the 1997 period, our sample accounts for over

a trillion dollars in sales, 3.9 million employees, and 25 billion dollars in R&D expenditures,

and the �rms obtain 56 thousand patents during 1995-1999.

13 In a small number of cases where we have scientists counts from the R&D Survey but lack R&D expenditures,
we similarly use the scientist counts to impute R&D values for �rms below the certainty threshold.
14Note that it would have been impossible to build a consistent sample that would also include incumbents

switching into innovation. To see why, consider keeping all of the past records for incumbent �rms that start
conducting R&D in 1987. In the prior periods, this approach would induce a mismeasurement of exit propensities
and growth dynamics because a portion of the sample will include �rms conditioned on survival until 1987.
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Our sample is very important for studying emissions in two ways. First, we account for

a substantial amount of activity in several of the main sectors responsible for emissions (e.g.,

Mueller et al. 2011). In the 1992-1997 period, for example, we account for 59% of sales in

industries related to coal and oil extraction, re�nement, and shipment; 33% of sales in industries

related to electricity production; and 21% of manufacturing sales. Among manufacturing

industries, our sample contains higher shares in industries more closely linked with emissions

(e.g., 64% in petroleum re�nement, 31% in primary metals). Second, while our sample does

not include many �rms directly from two high-emission sectors, agriculture and transportation,

our sample does include many of the manufacturers of products that are key inputs to these

sectors.

3.2.5 Designation of Firms as Clean or Dirty Energy

Beyond the development of the �rm panel, our leap-frogging calculations below require us

to identify whether patents are related to �dirty� or �clean� energy. We do so through the

�eld of patent technologies. We identify patents as related to dirty technologies if they are

connected to the extraction, re�nement or use of fossil-fuel based energy, including oil, coal,

natural gas, and shale technologies. We group into clean-energy patents �elds that are related

to geothermal, hydroelectric, nuclear, solar, and wind energy. We also include in the clean-

energy group identi�ed patents for conservation and utilization of energy. The results below

are robust to reclassi�cations of border group types.

For our model�s initial conditions, we also need to identify whether �rms are primarily

operating in dirty- or clean-energy applications. We do so through a simple rule that has

two steps. We �rst classify a �rm-period observation as focused on clean energy if 25% or

more of its energy-sector patents are devoted to clean-energy �elds; otherwise the �rm is

classi�ed as a dirty-energy �rm in the period. We use the 25% threshold as our assignments

of clean-energy �elds are conservative compared to dirty-energy �elds. We then describe the

�rm overall as a clean-energy �rm if half or more of its time periods achieve this clean-energy

focus. The distribution between clean and dirty uses at the �rm level is fairly bimodal� 96%

of observations have 75% or more of their patents in one technology� making the exact details

of these procedures less important. In total, 11% of our �rms are classi�ed in the clean-energy

sub-sector; 14% of energy-sector patents are classi�ed as clean energy.

Several points are worth noting at this stage. First, we generally include technologies that

are designed to make fossil fuels cleaner in the dirty-energy group. In this one regard, we

deviate from the classi�cations developed by Popp and Newell (2012) where coal liquefaction

and gasi�cation are included in alternative energy, for example. When we directly use Popp

and Newell�s (2012) technology scheme as a robustness check, we classify the technologies as

in their original work. Second, we have not built our sample selection or grouping procedures
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around technologies related to pollution abatement. We retain all patents for included �rms,

and thus they are part of our overall technology description, but we only use energy-directed

patents to classify patents and �rms into dirty- or clean-energy groups. Finally, we also use the

more detailed information the R&D Survey collects from selected major R&D producers. We

speci�cally utilize information collected from about 100 �rms on R&D expenditures related to

speci�c energy applications like coal or solar energy. We earlier identi�ed one application of

this extra information in that we manually searched the major patenting technology codes from

these R&D entities to identify energy-sector patenting groups that we should be including. A

second application is to verify our data development procedures, for example by assigning �rms

based upon the types of R&D they conduct rather than observed patents. This group from

the R&D Survey also con�rms the bimodal nature of our �rm groupings. While the group of

�rms asked these questions is too small and selected to serve as the backbone of our sample,

these checks are comforting. While Census Bureau disclosure prevents us from listing �rms,

we overlap well with Popp and Newell�s (2012) listed producers as one example.

3.3 Estimation and Choice of Parameters from Microdata

We �rst estimate the � parameter from our innovation production function, Xf =

�(Hf )
�(uf )

1��, which can be rewritten as ln(X=uf ) = ln(�) + � � ln(H=uf ). We measure

X by the �rm�s count of patents, H by the �rm�s R&D expenditures or scientist counts, and u

by the number of four-digit SIC industries in which a �rm is operating. We also check the ro-

bustness of our results to using three-digit SIC industry counts, sales and establishment counts

as our proxies for �rm size u. Our patent count measure is weighted by citations, with citation

counts normalized by the average citations achieved by other patents in the same patent class

and application year.

To estimate the � elasticity as accurately as possible, we use the panel nature of our data

and later return to estimating the � parameter. As noted earlier, we only use for this exercise

�rms that have a full panel of reported R&D data. To focus on higher quality data for our

di¤erenced estimations, we also require that the �rm be present in at least three periods. We

�rst estimate a linear regression with year �xed e¤ects �t, yielding

ln(Patents=productf;t) = �t + 0:625 (0:043) � ln(R&D=productf;t) + �f;t; (26)

with standard errors clustered by �rm. We then extend the estimation to allow for �rm �xed

e¤ects, and we estimate the panel elasticity in a �rst-di¤erenced format, yielding

� ln(Patents=productf;t) = �t + 0:353 (0:057) �� ln(R&D=productf;t) + �f;t; (27)

The range of these point estimates is representative of a broader set of estimates for the

� parameter. Table 1a summarizes eight variants of the OLS levels regressions. The rows
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indicate four measures of �rm size uf : SIC3 industry counts, SIC4 industry counts, sales,

and establishment counts. Column headers indicate whether R&D inputs are being measured

through expenditures or counts of scientists. The eight coe¢ cients are from eight separate

estimations of regression (26). The average of these eight estimations is 0.69, and the estimates

are consistently within the range of 0.63-0.76.

Table 1a. OLS Levels Estimates for � Parameter

R&D Input Measure Hf
Firm Size Measure uf : R&D Expenditure Scientist Counts
SIC3 Counts 0:632 (0:042) 0:653 (0:048)

SIC4 Counts 0:625 (0:043) 0:644 (0:048)

Sales 0:761 (0:053) 0:751 (0:048)

Establishments 0:714 (0:039) 0:732 (0:041)

Notes: Table presents eight variants of regression (26).

Table 1b similarly summarizes eight estimation variants of the �rst-di¤erenced regression (27).

The average across these variants is lower at 0.37, with a wider range from 0.29 to 0.51.

Table 1b. OLS First-Differenced Estimates for � Parameter

R&D Input Measure H
Firm Size Measure uf : R&D Expenditure Scientist Counts
SIC3 Counts 0:342 (0:056) 0:286 (0:052)

SIC4 Counts 0:353 (0:057) 0:296 (0:053)

Sales 0:405 (0:075) 0:348 (0:065)

Establishments 0:505 (0:058) 0:455 (0:054)

Notes: Table presents variants of regression (27).

Our baseline value for � is 0.5, taking a mid point within the range of estimates in Tables 1A

and 1B.

We also �nd comparable � parameters in robustness checks o¤ of this sample platform.

For example, restricting the sample to �rms with energy patents as more than 30% of their

innovations yields levels and �rst-di¤erences estimates of 0.744 (0.065) and 0.384 (0.100), re-

spectively. Restricting our sample to �rms that would have been de�ned for the sector using

Popp and Newell�s (2012) codes yields levels and �rst-di¤erences estimates of 0.704 (0.049) and

0.301 (0.071), respectively. Relaxing our requirement that the �rm be present in three periods

yields levels and �rst-di¤erences estimates of 0.614 (0.043) and 0.338 (0.056), respectively. We

likewise �nd similar outcomes when incorporating industry-year �xed e¤ects, using unweighted

patent counts, or similar adjustments. In addition, Acemoglu et al. (2012b) describe a related

instrumental variable elasticity of patenting to science and engineering workers of 0.694 (0.295)

across the whole economy developed through H-1B visa reforms estimated by Kerr and Lincoln

(2010).

Finally, Table 1C shows estimates from Poisson models that allow for zero patenting out-

comes. We report both random e¤ects and �xed e¤ects formats; to conserve space, we only
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provide two choices of �rm size that mostly bound the other variants. Standard errors are

bootstrapped. Using four-digit industry counts to measure size consistently delivers elasticities

around 0.33, while using establishment counts delivers elasticities around 0.57. Our baseline

estimate of � = 0:5 falls again within these ranges.

Table 1c. Poisson Estimates for � Parameter

R&D Input Measure Hf
Technique, Firm Size Measure uf : R&D Expenditure Scientist Counts
Random E¤ects, SIC4 Counts 0:326 (0:122) 0:361 (0:079)

Fixed E¤ects, SIC4 Counts 0:321 (0:106) 0:357 (0:089)

Random E¤ects, Establishments 0:567 (0:108) 0:584 (0:064)

Fixed E¤ects, Establishments 0:565 (0:103) 0:583 (0:076)

Notes: Table presents �xed and random e¤ects Poisson estimates similar to Tables 1A and 1B.

We next turn to the � parameter, which in our model describes technology leap-frogging.

This process is challenging to model empirically, and we are unfortunately unable to identify

exact races between clean and dirty technologies directly within the patent data. This lim-

itation is due to the extreme narrowness of the technology codes that are entirely clean or

dirty in application, while patent class divisions are too broad and few in number. We thus

instead identify the rate at which patents with exceptional quality emerge using patent cita-

tions. We speci�cally quantify the rate at which patents enter and establish quickly high levels

of citations compared to their incumbent peers.

We start with our dataset of all energy-sector patents granted to US inventors during

the post-1975 period. We calculate among these energy-sector patents the citation count

distribution among incumbent patents by year, excluding within-�rm citations. Incumbent

patents are de�ned to be those that were applied for 5-10 years before the focal year; we cap at

10 years prior so that we can have a stable window across a time period from 1985 onwards for

analysis. Citations are coming from patents being applied for in the focal year. By conditioning

the citation distribution upon a patent receiving a citation in a given year, we are e¤ectively

looking at technologies that are being actively used, with many incumbent patents dropping

out as no one is building on them.

We then calculate for new patents the citations they receive by year. We designate a

major entrant as any patent that has a citation count that exceeds the 90th percentile of the

incumbent distribution in any of its �rst three years. This evaluation approach is designed

to keep the incumbent groups (5-10 years earlier) separate from the entrant groups (max of

three years earlier). 4.2% of entrants achieve this level of major entrant. We �nd a slightly

lower estimate at 4.0% using Popp and Newell�s (2012) de�nitions, and a rate of 4.1% when

making the citation distributions speci�c to each patent class. Based upon these �ndings, we

set � = 4%.

Finally, for Ls, which is the supply of scientists and engineers involved in R&D-type ac-
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tivities in the model (relative to production workers), we use 5.5%. We calculate this share

from Census IPUMS using the 2000 5% sample. We keep non-group quartered workers who

are aged 20-65 years old and working in industries closely related to the energy sector. We

also require 20 weeks worked within the year and a usual hours worked of 20 or more during

each week. 5.5% is the share of these workers with bachelor�s educations and higher employed

in occupations related to science and engineering.

3.4 Initial Technology Gaps

To provide the initial distributions of the model, we develop estimates of the cumulative stock

of technologies invented by clean- and dirty-energy �rms using three-digit SIC industries as

approximations of product lines. We develop these distributions in three steps. The �rst step

is to calculate the sum of patents made by each �rm during the 1975-2004 period and the

�rm�s distribution of employment across SIC3 industries in these sectors over the same period.

We then apportion the �rm�s cumulative patent stock across SIC3 industries using the �rm�s

employment distributions. For each SIC3 industry, we �nally sum the apportioned patents

made by clean- and dirty-energy �rms. This sum of patents across all �rms, active or inactive,

re�ects the quality ladders structure of our model.

These calculations provide us over 400 estimates of comparative clean- and dirty-energy

stocks. Across these SIC3 industries, clean-energy �rms are estimated to have a higher cu-

mulative patent stock in 13.1% of industries. For data quality and Census Bureau disclosure

restrictions, we focus on the upper half of the industry distribution in terms of cumulative clean

and dirty patent counts, which has 13.0% of industries being led by the clean-energy stock;

within manufacturing and energy production speci�cally, this share is 12.5%. The following

table summarizes some details of these lines:

Table 2. Initial Condition Distributions SIC3

Metric: Clean Energy Dirty Energy
Mean Patent Total 260 1029

Standard Deviation 515 1500

Share: [0,20] 37% 0%

Share: [21,100] 25% 6%

Share: [101,500] 22% 50%

Share: [500+] 16% 44%

The average gap to the frontier for dirty-patents stocks in the 13% of cases where clean

patents have the lead is 424 patents, or in relative terms, 39% of the total patenting in that line

to date. The average gap to the frontier for clean-patent stocks in the 87% of cases where dirty

patents have the lead is 947 patents and 76% in relative terms. To convert the empirical gap

into the units of the model, we use the following reasoning. In our model, the annual patent
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�ows of incumbents is 16:1% per product line (the sum of xc = 3:9% and xd = 12:2%). In the

data, the median annual �ow of patents is approximately 17:1 per line. Hence we divide the

empirical patent distribution of clean and dirty (which consists of patents registered between

1975-2004) by a conversion factor 17:1=0:161 and round it to the closest integer. This gives us

the initial number of improvements ndj;0 and n
c
j;0. Then we compute the initial productivities as

qdj;0 = �
ndj;0 and qcj;0 = �

ncj;0 to provide the initialization values. The following graph plots the

density of this distribution with gaps between dirty and clean technologies on the horizontal

axis:
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This graph shows that in most product lines the dirty technology is only a few steps ahead

of clean technology, but there is a long tail of product lines with a large gap between dirty

and clean, and a small set in which clean is ahead of dirty. The fraction of product lines with

a non-zero gap in terms of step sizes is 90%. Clean energy leads by one or more step sizes

in 9% of cases. Dirty energy has a lead of 20 and 50 steps sizes or more in 11% and 2% of

technologies, respectively. We later consider an alternative initial distributions that modi�es

several of the modelling choices made here.

3.5 Simulated Method of Moments

The remaining parameters �; �; FI and FE are estimated using simulated method of moments

(SMM). McFadden (1989), Pakes and Pollard (1989) and Gourieroux and Monfort (1996)

characterize the statistical properties of the SMM estimator. This quantitative approach takes

a set of key moments from our model, and then chooses the parameter vector so as to minimize

the distance between these moments as implied by our model and as computed from the Census
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Bureau data,

min

4X
i=1

jmodel (i)� data (i)j ;

where we index each moment by i: SMM iteratively searches repeatedly across sets of parameter

values for �; �; FI and FE in the model until the model�s moments are as close as possible to

the empirical moments (see Adda and Cooper, 2003, for further details). We also choose

the heterogeneity parameter, �, as 10% and verify that our results are not sensitive to this

parameter.

We use three moments from the microdata� �rm entry rates, �rm exit rates, and the

average R&D/sales ratio of �rms� together with the growth rate of the sector to identify

these parameters. The entrant�s labor share and exit rates are calculated across the �ve-year

intervals of our Census Bureau data and then transformed into annualized net rates of 1:3%

and 1:75%, respectively. We match the construction of these entry and exit rate moments in

the model. The weighted average R&D-to-sales ratio is 6:57%, using log sales as weights and

capping the R&D/sales ratio at 10x to reduce outliers (approximately the 99.8th percentile

of the distribution). The aggregate annual sales growth per worker is 1:23% for the sector

across the 1975-2004 period. After identifying these parameters in the estimation section, we

investigate the �t of the model by comparing the implications of the model with a battery of

other non-targeted moments from the microdata.

3.6 Computational Algorithm

Our theoretical analysis shows that microeconomic behavior is independent of climate dynam-

ics. We therefore solve for value functions, innovation rates, and distributions �rst, then use

those to �nd the time path for the carbon stock, temperature and other variables of interest.

The solution algorithm for this model involves �nding the transition dynamics as the �xed

point of a forward-backward iteration process, as in Conesa and Krueger (1998). See Zangwill

and Garcia (1981) for further references. If the state space were of a more manageable size,

one could simply solve the value function over this space and characterize the dynamics given

arbitrary initial conditions. However, in this case the state space is the distribution of product

lines over the technology gaps between the clean and dirty technologies. For any reasonable

approximation, this results in a very high dimensional state space. Therefore, we solve each

element of the model as a function of time given the initial conditions from the patenting data.

The value function in early periods will thus depend on value functions in later periods. These

later period value functions will in turn depend on the later period product distribution, which

depends on early period value functions and innovation rates.

To solve for the �xed point of the sequence of value functions, we �rst discretize time into

N = 2048 steps and set a terminal period T = 2000. Due to the symmetry between technology

34



types inherent in this model, when a single type of technology is dominant� in the sense that

the technology gap distribution is heavily skewed to either clean or dirty technology� one can

analytically characterize value functions vjn;1 and innovation rates xj1 and zj1. We use these

values as terminal conditions, though we do not know in advance which technology (clean or

dirty) will be dominant. In addition, we set large upper (100) and lower (�100) bounds on
the step gap distribution space. The algorithm proceeds as follows:

1. Posit an initial guess for the value function at time zero of the form

vjn;t(0) =
�jn
�+ �z

8t

where �z represents an estimated rate of creative destruction (we use �z = 0:15). Instantiate

the technology gap distribution using the patent data with

�n;t(0) = �n;0 8t:

2. Iterate forward in time from t = 0 to t = T by �nding innovation rates xjt and z
j
t given

value function and product distributions guesses at time t + 1, vjn;t+1(k) and �n;t+1(k).

Using these innovation rates, update the time t + 1 product distribution �n;t+1(k + 1)

using discrete time versions of the �ow equations in (21).

3. Find the implied dominant technology at the terminal period by determining which

technology type has a higher aggregate innovation rate as some late stage period T �TP
(we use TP = 200). Use the corresponding terminal value functions to update v

j
n;T (k +

1) = vjn;1.

4. Iterate backward in time from t = T to t = 0 by updating value function vjn;t�1(k + 1)

using vjn;t(k) and �n;t(k) according to a discretized version of the HJB equation in Lemma

1, re-solving for innovation rates xjt and z
j
t in the process.

5. Repeat steps 2-4 until the convergence criterion

max
n;t

���vjn;t(k + 1)� vjn;t(k)��� < "
is met. We use " = 10�6.

In order to avoid any instability, particularly when one is close a threshold where the as-

ymptotically dominant technology switches over, we also introduce heterogeneity in incumbent

�xed costs as explained above.15

15Our algorithm introduced a similar heterogeneity in entrant �xed costs, but at the end, entrants are never
in the region where this heterogeneity matters.
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Using up-to-date computer hardware, the equilibrium solver takes anywhere from �ve sec-

onds to two minutes, depending on the speed of convergence. The code is written mostly in

Python, with core routines written in C/C++.

Estimation To �nd the moments used in the SMM estimation, we simulate a panel of

16384 �rms using equilibrium variables from the above model solving routine. Each �rm has

a portfolio of product lines with various technology gap values. We cap the maximum number

of product lines a �rm can have at 200. In order to determine the sales and R&D activity of

the �rm, we must keep track of both the number of product lines it is currently operating in,

as well as the knowledge stock of the �rm, which can in general di¤er. We simulate this panel

of �rms for 5 years to replicate the data generating process, and discretize time to have 100

subperiods per year, so that the simulations have 500 periods.

Optimal Policy We compute optimal policies for both the constant and time-varying

cases. In the constant case, we use a straightforward grid search to �nd the optimum. In the

time-varying case, we parameterize policies using a three stage carbon tax and a three stage

research subsidy. Within each stage, whose boundaries are also parameterized and optimized

over, we have constant policy levels. We then search over this space of functions using a

combination of a simple simulated annealing algorithm (Kirkpatrick et al, 1983) and a Nelder-

Mead (simplex) algorithm (Nelder and Mead, 1965).

4 Estimation Results

In this section, we provide the results of the simulated method of moments estimation and

discuss the �t of our model to non-targeted moments. Finally, we show how atmospheric

carbon concentration, temperatures and aggregate output evolve given these parameters in a

laissez-faire equilibrium (with no policy intervention) starting from the observed distribution

of technology gaps.

4.1 Parameter Estimates

Table 3 summarizes our parameter estimates.

Table 3. Parameter Estimates

Parameter Description Value
� Innovation productivity 0.500
� Innovation step size 1.075
FI Fixed cost of incumbent R&D 0.002
FE Fixed cost of entry 0.035
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Our innovation productivity estimate implies that one unit of labor with a single product line

generates an innovation with probability of about 8% a year. We estimate the innovation step

size as 1:075 which implies a gross pro�t margin 7%. Finally our model predicts a sizable �xed

cost advantage for incumbent �rms. Their �xed cost of operation is equivalent to 6% of the

entrants��xed cost.

4.2 Goodness of Fit

Here we describe the goodness of �t of our model, �rst focusing on the four targeted moments,

and then a range of diverse non-targeted moments.

4.2.1 Targeted Moments

Table 4 shows the values of the four moments used for estimation in the data and the model

implications.
Table 4. Moment Matching

Moments Model Data
Entry Share 0.013 0.013
Exit Rate 0.018 0.018

Average R&D/Sales 0.066 0.066
Aggregate Sales per Employee Growth 0.007 0.012

On the whole, there is a very good match between the model and the data. The entry share,

exit rate and R&D intensity are identical between the data and the model. Moreover the

aggregate sales per worker growth is also very close.

4.2.2 Non-targeted Moments

Our main method of evaluating the quantitative �t of our model is to look at a range of

non-targeted moments, which are presented (together with the model implications) in Tables

5A-5C.

We choose the non-targeted moments to represent aspects of the �rm size distribution

and its growth properties, which are quite di¤erent from the moments we targeted in our

estimation. Our �rst non-targeted moment compares the size ratio of the median entrant to

the median incumbent �rm. Our targeted moments on entry/exit rates, overall sector growth,

and R&D intensity do not directly impose strong constraints on this size distribution. Table

5A contrasts the size ratios in the model and data with respect to employment, sales, and sales

per employee, and shows that our model implications match the data very closely with respect
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to the latter two metrics, though not as well for employment.16

Table 5A. Entrant Size Ratio to Incumbents

Ratio of Median Sizes
Size Measure: Model Data
Employment 0.17 0.03
Sales 0.18 0.20
Sales per Employee 1.12 1.05
Notes: Table compares non-targeted moments in model and data.

Our next point of comparison is for the structure of the growth distribution. We �rst

calculate the unconditional growth rate of employment for each �rm in the model and data

de�ned as (Empt � Empt�1)=((Empt + Empt�1)=2). This formula divides the employment
change across the period by the average of the start and end values. As argued by Davis,

Haltiwanger and Schuh (1996), this approach has attractive properties like a symmetric treat-

ment of positive and negative growth and bounded values that minimize outliers. We calculate

growth over �ve-year intervals. We then calculate the probability that �rms experience sub-

stantial movements in either positive or negative directions. Comparing these movements in

the model to the data is meaningful as it provides insights into how well the innovation step

sizes and associated �rm dynamics mirror the sector�s true performance. Table 5B summarizes

this comparison:

Table 5B. Comparison of Growth Distribution

Employment Growth Probability
Change over 5-Years: Model Data
Decrease 75% or more 0.17 0.11
Decrease 50% or more 0.20 0.15
Decrease 25% or more 0.27 0.26
Increase 25% or more 0.24 0.31
Increase 50% or more 0.17 0.20
Increase 75% or more 0.15 0.14
Increase 100% or more 0.08 0.11
Notes: Table compares non-targeted moments in model and data.

On this dimension, the model matches the data quite well. Compared to the data, the model

somewhat over-predicts major downward employment declines of 50% or more. Recall that

we matched the exit rate itself almost exactly, so this indicates an over-prediction of large

employment declines conditional on survival. On the other hand, the model matches the data

well for predicting employment decreases or increases of 25% or more. Likewise, the model and

data are in very close agreement on the relative probabilities and sizes of large employment

increases for �rms.
16To pass Census Bureau disclosure restrictions, the empirical medians are "fuzzy" median estimates that use

the average values over the 45th to 55th percentiles.
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Our �nal comparison is the variation in conditional growth rates for employment across the

�rm size distribution, again over a �ve-year period. We divide �rms into quantiles based upon

their initial size in each period. We then compute the growth rates using the above formula,

and the following table provides the comparison:

Table 5C. Comparison of Growth over Size Distribution

5-Year Conditional Growth Rates
Quantile of Sizes: Model Data
Smallest 18% 31%
2nd 25% 14%
3rd 18% 11%
4th -5% -1%
Largest -0% -10%
Notes: Table compares non-targeted moments in model and data.

The comparison is again reasonable. We match the general feature in the data that conditional

growth rates are highest for small �rms. The model�s employment distribution is a little less

�ne-grained than the data, as about 50% of our �rms have one product and employment is

partially proportional to product counts. In consequence, there is limited variation across the

smaller quantiles in the model compared to the more regular distribution in the data. The

model and data then match quite well in identifying lack of growth for the top two quantiles

compared to the bottom three (though the model does not predict employment declines in the

largest �rms that are present in the data).

Overall, our reading of the evidence is that for this range of diverse moments, which we

did not target in our estimation, the model performs reasonably well, and this bolsters our

con�dence that our quantitative model is able to capture production and innovation dynamics

in the energy sector.

4.3 Climate Dynamics in the Laissez-faire Economy

We next describe the implied future equilibrium and atmospheric carbon paths of the model

given our estimates with the case of no carbon taxes and research subsidies. Given the initial

distribution of technology gaps, dirty innovation is more productive and with no policy inter-

vention, most R&D is initially targeted to the dirty technology as shown in Figure 4. Moreover,

at these innovation rates, technology gaps and the pro�tability of dirty technologies increases

relative to those of clean technologies, and clean R&D converges to zero. Consequently, in the

long-run clean technologies disappear completely and dirty technologies take over the whole

economy.
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The obvious implication of this time path of innovations is a steady increase in dirty energy

production and carbon emissions. There are two ways of ascertaining the implications of these

growing carbon emissions from our economy estimated and calibrated to US data. The �rst

is to ignore emission growth from the rest of the world (i.e., keeping their emissions at a

constant level). This is done in Figure 5A, which shows an increase in temperature of an

additional 2.5�C in the next 200 years.17 The alternative is shown in Figure 5B and assumes

that emissions from the rest of the world will grow at the same rate as the US.
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The impact on global temperature is considerably exacerbated in view of the fact that we are

now showing the increase in global temperature resulting from growth in global emissions, not
17We use the following formula to compute the temperature changes:

�temperature =
�
�
lnSt � ln �S

�
ln 2

:
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just US emissions. It is important to recall that, as noted above, given the functional form in

(2), the exact path of emissions from the rest of the world has no impact on optimal policy

(since the marginal damage created by US emissions are independent of the level of global

emissions). This is the reason why we did not have to take a position on the time path of

emissions in the rest of the world until this point (and now we are only taking a position in

order to translate its implied path of emissions into changes in global temperatures).

5 Policy Analysis

In this section, we derive the policy sequence that maximizes discounted welfare. Throughout,

we do not allow the social planner to correct for monopoly distortions, thus limiting ourselves

to the policy instruments discussed above� a carbon tax and subsidy to clean research.18 In

addition, our theoretical analysis makes it clear that what is relevant is the di¤erential tax

and subsidy rates for clean vs. dirty energy, thus we just look at taxes on dirty production,

which we refer to as �carbon taxes,�and subsidies to clean innovation. Finally, we restrict the

subsidies to entrants and incumbents to be the same, i.e., sEt = sIt for all t (based on early

results which suggest that when both instruments are allowed to vary they are often equal or

very close to each other). Throughout, we consider a private discount rate of � = 1% and

present results for two di¤erent social discount rates: �sp = 1% and �sp = 0:1%.19 In both

cases, paths that involve no switch to clean technology will lead to unbounded atmospheric

carbon and temperature increases and consumption limiting to zero because of the economic

distortions created by the unbounded increase in atmospheric carbon (see equation (2)), and

we assign minus in�nite social welfare to such paths, so that when feasible, a switch to clean

technology is preferred.20 Finally, we �rst focus on optimal constant policies (where carbon

taxes and research subsidies are constant over time), which have several advantages: they are

simpler and more transparent and the optimal time-varying policies, which we also characterize

below, are time-inconsistent, raising some caveats about interpretation.

18As mentioned above, in the one-sector version of our model (either with only dirty or only clean technology),
taxes or subsidies to research would only a¤ect relative wages of skilled workers (employed in the research sector),
and crucially not the aggregate rate of innovation. For this reason, subsidies to clean research or taxes on dirty
research are identical in our model.
19The reasoning here is that, following Stern (2007), the social planner� society� may have a lower discount

rate than that implied by market interest rates. Thus 0:1% is what should be applied to the welfare analysis of
the social planner, while still keeping the discount rate that �rms use in their decisions at 1%:
20This is implied whenever the growth rate g is greater than �sp, which is always satis�ed when �sp = 0:1%,

but may or may not be satis�ed when �sp = 1% depending on the growth rate.
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5.1 Optimal Constant Policies

Table 6 shows optimal constant policies for the two values of social discounting, �sp = 1%

(high), �sp = 0:1% (low).

Table 6. Optimal Constant Policy

�sp = 1% �sp = 0:1%

� 16% 44%
s 61% 95%

In both cases, there is a very aggressive research subsidy for clean technology. With �sp =

1%, the carbon tax is fairly low, at 16%, while research directed at clean technologies receives

a 61% government subsidy (meaning that for every dollar of R&D spending, there is a 61 cents

subsidy). With the social discount rate of �sp = 0:1%, carbon taxes are raised to 44%, but

now clean research subsidies are even more aggressive, at 95%.

The intuition for why optimal policy relies so much on subsidies to clean research is instruc-

tive. The social planner would like to induce a switch from R&D directed at carbon intensive

dirty technologies towards clean technologies. She can do so by choosing a su¢ ciently high

carbon tax rate today and in the future, because this would reduce the pro�tability of pro-

duction using dirty technologies and secure both a switch to clean production and, on the

basis of this, to research directed at clean technologies. However, this is socially costly because

given the current state of technology, switching most production to clean technology has a high

consumption cost (because the marginal costs of production of clean technologies are initially

signi�cantly higher than those of dirty technologies). Hence it is a better strategy for the social

planner to choose the carbon tax to only deal with the carbon emission externality and rely

on the research subsidy to induce the switch to clean technologies in the long run. Figure 6 in

fact shows that the social planner is able to do this, particularly with �sp = 0:1%, where the

optimal policy involves a very rapid ramp up of clean innovation rates and the disappearance

of all research directed to dirty technologies in about 130 years. Interestingly, however, with

�sp = 1%, the social planner chooses not to completely replace dirty research with clean re-

search in the �rst several hundred years. Instead, she subsidizes clean research just enough to

make sure that clean research and thus clean technologies also survive for a long time, but not

so much that they overtake the dirty sector completely. As a result, dirty innovation survives

for several hundreds years (clean innovation exceeds dirty innovation only around year 500),

but throughout, innovation rates in the clean technology are signi�cantly higher than in the

laissez-faire equilibrium shown in Figure 4 where they converged to zero in about 25 years.
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Figure 6: Innovation Rates Under Optimal Policies

Figure 7 depicts the implied path of temperature increases under the optimal policies, in

the same two ways as we have done in Figure 5� assuming either that emissions from the rest

of the world are constant or that they grow at the same rate as US emissions. In both cases,

global temperature increases less, and in fact signi�cantly less with �sp = 0:1%, than in Figure

5.
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5.2 Optimal Time-Varying Policies

We now return to optimal time-varying policies and characterize the welfare gains from using

time-varying rather than constant policies. For computational reasons, we look for policies
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that take a simple �step function form�with three endogenously determined switch points.21

The resulting optimal policies are shown in Figure 8. A couple of features are worth noting.

First, the subsidy rate for clean research is very similar to the constant policies in both cases.

With a social discount rate of �sp = 0:1%, this subsidy rate is roughly constant (starting at

95% and declining to 93% at year 54).22 Moreover, in this case, the carbon tax starts somewhat

higher than with the optimal constant policy but then declines from 54% to 34% at year 92).

With �sp = 1%, the pattern is di¤erent: the subsidy rate starts and remains at 25%, again

very close to its constant optimal policy value, but the carbon tax starts at zero and stay there

for quite a while, and then increases dramatically to 650% in year 328.
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The patterns shown in Figure 8 result from the interplay of two counteracting forces. First,

all else equal, the social planner would like to delay as much as possible the consumption loss

from switching to clean technologies.23 Second, carbon taxes early on are more e¤ective in

both switching production and reducing emissions (given the long half life of carbon in the

atmosphere imposed in our model of the carbon cycle). With �sp = 1%, the �rst e¤ect is

dominant because with this relatively high social discount rate, high consumption during the

early years is highly valued, encouraging the planner to delay the start of high carbon taxes

for quite a while. In consequence, in this case carbon taxes are sharply backloaded, and in

fact, as in the constant policy case, dirty innovation disappears only very slowly� over several

hundreds of years. With �sp = 0:1%, the future is less heavily discounted, strengthening the

21For our baseline results, we experimented with increasing the number of switch points and with alternative
formulations of time variation, with broadly similar results.
22Note that research subsidies in the far future may not matter very much because early research subsidies

may have already induced a large reallocation of research from dirty to clean. Nevertheless, research subsidies
in the future are not undetermined because there is always some positive fraction of �rms with a dirty portfolio
of product lines which will then have incentives to undertake research in the dirty technology (this fraction
declines to zero asymptotically in the optimal allocation with �sp = 0:1%).
23This e¤ect in part re�ects the fact that the social planner is committing to a policy path and is not �time

consistent�.
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second e¤ect and making carbon taxes frontloaded and the complete switch to clean innovation

much more rapid. In both cases, however, the average values of the carbon tax in the �rst 200

years is in the ballpark of the constant optimal policies (16% with �sp = 1% and 44% with

�sp = 0:1%).

Table 7 shows that the welfare loss from using constant policies is quite small, 0.3% with

�sp = 0:1%, but sizable, about 16%, with �sp = 1%, which re�ects the bene�ts for social

planner�s utility resulting from high consumption growth at the expense of high emissions in

the �rst 300 years. This pattern suggests that the results with the low social discount rate,

�sp = 0:1%, are more plausible in a range of dimensions.
24

Table 7. Welfare Costs

�sp = 1% �sp = 0:1%

16% 0.3%

5.3 Counterfactual Policy Analysis

Our model enables us to investigate the welfare and climatic implications of a range of coun-

terfactual policies. Here we focus on two counterfactuals. The �rst is relying just on a carbon

tax (i.e., no research subsidy) as the policy tool, and the second is delaying intervention for 50

years and then choosing the optimal policy from that point onwards. We focus on time-varying

optimal policies, which are shown for these two counterfactual policies in Figure 9.
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Optimal policies following the 50-year delay are more aggressive than the baseline optimal

policies, and when the only policy tool is the carbon tax, this tax also is typically higher.25

24We have also veri�ed that our main results with an intermediate social discount rate of �sp = 0:5% are very
similar to those with �sp = 0:1%, again making us trust these results more than the ones based on �sp = 1%.
25When just relying on the carbon tax and with �sp = 0:1%, the carbon tax reaches zero earlier than in the

baseline shown in Figure 8. Nevertheless, it is e¤ectively more aggressive than the baseline since it starts at a
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For example, in the carbon tax only counterfactual, this tax is higher because it is also

being used to redirect innovation towards clean technologies. As a result, with �sp = 1%,

aggregate temperature increases less at long horizons under this constrained optimal policy

than our actual optimal policy, but this is at the expense of slower output growth, especially

early on. As a result, the cost of just relying on carbon tax for optimal policy, shown in Table 8,

is 4.2% with �sp = 1% and 3.4% with �sp = 0:1%. Delaying the start of optimal policies by 50

years leads to greater losses� a consumption equivalent welfare cost of 8% with �sp = 1%, and

16.6% with �sp = 0:1%. These numbers indicate that delaying policy interventions to combat

carbon emissions could have very signi�cant welfare costs, especially when the social discount

rate is low. Moreover, just relying on carbon taxes� eschewing research subsidies� could also

have sizable welfare costs.

Table 8. Welfare Costs

Carbon Tax Only 50-year Delay

�sp = 1% �sp = 0:1% �sp = 1% �sp = 0:1%

4.2% 3.4% 8.0% 16.6 %

Finally, we also evaluate what the climatic and welfare implications of maintaining current

US policies (here interpreted for the whole world) would be relative to adopting an optimal

policy moving forward. For this purpose, we have tried to estimate the carbon taxes implied by

US policies and the current subsidies to clean innovation (relative to dirty R&D) in our sample

of �rms. There is much uncertainty about what the carbon tax in the United States will be

moving forward. A cap-and-trade program is likely to be implemented, but it is unclear what

the implied carbon tax rate will be. On the other hand, Greenstone et al. (2011) estimate a

social cost of carbon equal to about $21 in 2010, expressed in 2007 dollars, and this number

is currently being used for cost-bene�t analysis by US agencies. This social cost estimate is

the central tendency across a number of models and scenarios considered. The social cost

increases in real 2007 terms to $45 in 2050 as a consequence of future marginal emissions

becoming ever more harmful. We therefore use two values for the �business-as-usual�carbon

tax, 0% consistent with the current situation, and 24% (approximately implied by $45 social

cost of carbon in 2050, a relatively early point in the transition path).26 We estimate the

current clean research subsidy from our sample as follows: over our full 30 year period, 49% of

all R&D expenditures by our clean �rms are federally funded, while the same number is 11%

higher level (66% instead of 54%) and remains at a higher level (54% instead of 34%) for the �rst 220 years,
and this induces both a much more rapid switch to clean production and also encourages a switch to clean
innovation despite the absence of research subsidies in this case.
26 In particular, US carbon emissions are 1.58 billion tons in 2002. One metric ton of carbon is equivalent to

3.667 units of carbon dioxide. Our dirty �rms have sales of approximately one trillion dollars in this year. The
$45 social cost is $39 in 2002 terms. These numbers imply a real tax rate in 2050 of about 23% ((39� 3:667�
1:58�109)=1012 ' 0:23). We approximate this with an 24% tax rate (since our taxes have to be multiples of �).
This carbon tax rate is much less than currently used in Sweden (see Golosov et al. 2011) and also less than
the numbers suggest that by Nordhaus (2008).
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for our dirty �rms. This implies a 43% ((1� 0:49) = (1� 0:11) ' 1 � 0:43) subsidy for clean
R&D relative to dirty R&D.

The scenario with a zero carbon tax, regardless of the discount rate, involves 100% welfare

costs because, in this case, temperature increases rapidly and continues to grow unboundedly.

Essentially, 43% R&D subsidy for clean is insu¢ cient to redirect technological change towards

clean with no carbon tax. The resulting signi�cant damage to the environment leads to a

disastrous welfare result. Interestingly, however, even with this less than optimal subsidy

to clean research, it turns out that the temperature increase can be contained if there is a

moderate carbon tax at 24%. As a result, with this moderate carbon tax, the welfare costs are

still sizable but limited as shown in Table 9.

Table 9. Welfare Costs

� = 24%; s = 43% � = 0; s = 43%

�sp = 1% �sp = 0:1% �sp = 1% �sp = 0:1%

18% 8% 100% 100%

6 Robustness and Extensions

In this section, we investigate how our estimation, optimal policy and counterfactual results

are a¤ected by a range of di¤erent modeling assumptions or variations on parameter estimates.

Throughout, to economize on space we only report the implied optimal policies (even when

the variation in question involves reestimating the parameters of the underlying model).

6.1 Alternative Damage Elasticity 


As noted above, actual damages from atmospheric carbon may be greater than the estimates

commonly used in the economics literature. We now show the sensitivity of our results to

higher values of these damages, captured by the parameter 
, in our model. Table 10 depicts

constant optimal policies for two cases, when 
 is twice and 10 times as large as our baseline

value, 
 = 5:3 � 10�5, and Figure 10 shows optimal time-varying policies for the same two
cases.

Table 10. Optimal Constant Policies


 = 2� 
 = 10�
�sp = 1% �sp = 0:1% �sp = 1% �sp = 0:1%

� 16% 44% � 24% 54%
s 61% 95% s 95% 95%

Overall, the results are remarkably similar to those in our baseline. Interestingly, with

�sp = 1%, optimal constant policies are identical when 
 is twice as large as the baseline.

This result, which at �rst appears counterintuitive, is because the optimal policy in this case
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does not eliminate but chooses to contain carbon emissions (and does not even eliminate the

dirty sector). When 
 is doubled, the social planner still prefers to maintain this containment

strategy, making optimal policies very similar to the baseline. When 
 is taken to be much

larger (10 times as large as the baseline), this is no longer optimal, and we now see a more

aggressive carbon tax and a much more aggressive research subsidy, utilized for eliminating

the dirty sector.
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Optimal time-varying policies, which are shown in Figure 10, are also quite similar� but

not identical� to the baseline.

Overall, with the exception of the last case mentioned, the results suggest that the qualita-

tive, and even quantitative, messages from our analysis are fairly robust to di¤erent economic

damages from atmospheric concentration.

6.2 Costly Research Subsidy

We next investigate the robustness of our results to assuming that R&D subsidies create direct

distortions. In particular, we assume that for every dollar of subsidy, 1 + � dollars need to be

spent, so that � is a waste, which we subtract from consumption. We consider two values of

�, 50% and 100%, both of which are very aggressive choices on the distortion or implications

of research subsidies. The results for constant policies are shown in Table 11.

Table 11. Optimal Constant Policies

50% Consumption Cost 100% Consumption Cost

�sp = 1% �sp = 0:1% �sp = 1% �sp = 0:1%

� 16% 54% � 16% 66%
s 61% 53% s 61% 0%

We �nd that except in one case, optimal policy still makes use of aggressive research

subsidies despite the signi�cant waste that these create. The reason for this is that, as implied
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by our discussion above, the carbon tax is a poor substitute for research subsidies; it also

encourages clean research but does so at the cost of creating more intra-temporal distortions.

In consequence, there is ample room for research subsidies even when they are distortionary.

In fact, Table 11 shows that with a discount rate of �sp = 1%, optimal constant policies are

identical to the case without any distortions. Intuitively, the social planner �nds it optimal

to leave the carbon tax unchanged (recall that the carbon tax can only change in steps),

and with unchanged carbon tax, the research subsidy also remains constant. With the lower

social discount rate, �sp = 0:1%, the carbon tax becomes more aggressive; in fact, with 100%

distortions from research subsidies and this lower social discount rate, the optimal constant

policy increases the carbon tax signi�cantly and ceases to use research subsidies. However,

Figure 11 shows that optimal time-varying policies in this case still involve heavy use of positive

research subsidies. Moreover, the qualitative pattern of optimal time-varying policies is quite

similar to the baseline, shown in Figure 8, and again involve backloading of carbon taxes for

�sp = 1%, frontloading of carbon taxes for �sp = 0:1%, and fairly aggressive use of research

subsidies, especially in the �rst few hundred years. The fact that research subsidies are now

phased out entirely with �sp = 0:1% is also very intuitive: research subsidies early on are

su¢ cient to switch most innovation to clean, and start in�uencing only a few �rms after a

while (as most leading-edge technologies are now clean); because they are costly and become

largely unnecessary, it is natural for the social planner to rely less on them. With �sp = 1%,

this does not happen because the transition to clean technology is slower and research subsidies

are still useful for several hundreds of years.
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Overall, we conclude that with reasonable values of distortions, and even with certain

extreme values of distortions, the broad pattern of optimal policies is quite similar to the

baseline case, and research subsidies are still an essential part of the portfolio of optimal

policies, even if they may be signi�cantly distortionary.
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6.3 Alternative R&D Elasticities �

Our baseline results are for � = 0:45 which averaged across cross-sectional and �rst-di¤erence

estimates. We now reestimate the model using �rst a value of � in the ballpark of the cross-

sectional estimates (� = 0:65) and then for a value corresponding to the �rst-di¤erence es-

timates (� = 0:35), and investigate the implications of this for the �t of the model and for

optimal policy. Overall, the �t of the model is not a¤ected much by the change in �, and

the implications for optimal constant policies are shown in Table 12 and optimal time-varying

policies are shown in Figure 12.

Table 12. Optimal Constant Policy Rates

� = 0:35 � = 0:65

�sp = 1% �sp = 0:1% �sp = 1% �sp = 0:1%

� 16% 34% � 24% 66%
s 0% 95% s 84% 84%

When the elasticity of innovation to R&D e¤ort is higher than in our baseline, at � = 0:65,

the results are also remarkably similar to the baseline both with constant and time-varying

policies. With the lower elasticity, � = 0:35 and �sp = 0:1%, they are also fairly similar.

However, with � = 0:35 and �sp = 1%, the optimal constant policy is quite di¤erent. To un-

derstand the reason why, recall that in our baseline with �sp = 1%, the optimal policy involves

positive research e¤ort directed both towards dirty and clean technologies. When the elasticity

of innovation to R&D declines, the social planner, restricted to a constant policy and with a

reasonably high discount rate, �nds it optimal to induce a slow switch to clean technology,

which can be achieved with just a carbon tax. This is partly an artifact of constant policies;

Figure 12 shows that optimal time-varying policies still heavily rely on research subsidies in

this case. We thus conclude that the main message from our baseline results continue to apply

with a fairly wideband of elasticities.
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6.4 Alternative Leapfrogging Probabilities �

We also investigate the implications of di¤erent values of �, in particular, focusing on a lower

and higher estimate of � (� = 0:03 and � = 0:05). The results reported in Table 13 and Figure

13 are quite similar to the baseline results both quantitatively and qualitatively. In particular,

optimal constant policies are in the ballpark of our baseline with � = 0:04, and optimal time-

varying policies have the same backloading and frontloading properties and similar values,

though the exact switch points do di¤er.

Table 13. Optimal Constant Policy Rates

� = 0:03 � = 0:05

�sp = 1% �sp = 0:1% �sp = 1% �sp = 0:1%

� 24% 54% � 16% 44%
s 95% 95% s 32% 95%
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6.5 Alternative Initial Technology Distribution

Finally, we also considered an initial technology gap distribution de�ned with several modi�-

cations from our baseline. First, rather than just sum patent counts, we weight patents by the

normalized citation counts the patent receives. Second, we consider four-digit industries rather

than three-digit industries. And third, we only consider industries within the manufacturing

and energy sectors. Using these criteria, there are 332 SIC4 industries that are of su¢ cient

size in terms of innovative �rm counts to pass Census Bureau disclosure restrictions. Among

these industries, 9.4% are led by the clean-energy stock. Table 14 summarizes some moments
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of this distribution:

Table 14. Initial Condition Distributions SIC4

Metric: Clean Energy Dirty Energy
Mean Patent Total 140 663

Standard Deviation 401 1242

Share: [0,20] 53% 2%

Share: [21,100] 23% 18%

Share: [101,500] 17% 48%

Share: [500+] 6% 33%

The average gap to the frontier for dirty-patents stocks in the 9% of cases where clean

patents have the lead is 463 patents, or in relative terms, 33% of the total patenting in that

line to date. The average gap to the frontier for clean-patent stocks in the 91% of cases where

dirty patents have the lead is 624 patents and 82% in relative terms. The conversion factor in

this case is 12:6=0:161. The distribution graph has a broadly similar shape as Figure 3 and we

omit it to save space. The fraction of product lines with a non-zero gap in terms of step sizes

is 82%. Clean energy leads by one or more step sizes in 7% of cases. Dirty energy has a lead

of 20 and 50 steps sizes or more in 8% and 2% of technologies, respectively.

Table 15. Optimal Constant Policy Rates

�sp = 1% �sp = 0:1%

� 16% 54%
s 74% 95%

Using this alternative distribution of initial technology gaps has fairly limited impact on

optimal constant and time-varying policies, which are shown in Table 15 and Figure 14. Both

optimal constant and time-varying policies are remarkably similar to the baseline, making

us conclude that our qualitative and even quantitative results are fairly robust to reasonable

variations in the initial distribution of technology gaps.
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7 Conclusion

One of the central challenges facing the world economy is reducing carbon emissions, which

appears to be feasible only if a successful transition to clean technology can be induced. This

paper has investigated the nature of a transition to clean technology theoretically and empir-

ically. We developed a microeconomic model where clean and dirty technologies compete in

production and innovation. If dirty technologies are more advanced to start with, the potential

transition to clean technology can be di¢ cult both because clean research must climb several

steps to catch up with dirty technology and because this gap discourages research e¤ort di-

rected towards clean technologies. We characterized several properties of the equilibrium in

this model and then estimated its key parameters from microdata on production, employment,

R&D, patents and entry and exit of �rms in the US energy sector, using regression analysis

and simulated method of moments. Our model performs fairly well in matching a range of

patterns in the data that were not directly targeted in the estimation, giving us con�dence

that it is potentially useful for the analysis of the transition to clean technology in the US

energy sector.

Theoretically, carbon taxes and research subsidies encourage production and innovation in

clean technologies. The key question we investigate using our estimated quantitative model

is whether optimal policy will indeed secure a transition to clean technology, and if so how

rapidly, and whether it will do so using carbon taxes or a combination of carbon taxes and

research subsidies. A naïve intuition would be that only carbon taxes should be used because

externalities are created by carbon (in the absence of these carbon externalities, the social

planner would have no reason to interfere with or subsidize research).

In contrast to this intuition, we �nd that optimal policy heavily relies on research subsidies,

and this result is fairly robust across a range of variations and for di¤erent damages and social

discount rates. We also use the model to evaluate the welfare consequences of a range of

alternative policy structures. For example, just relying on carbon taxes or delaying intervention

both have signi�cant welfare costs.

Though, to the best of our knowledge, it is the �rst attempt to develop a microeconomic

model of the transition to clean technology and to quantitatively characterize optimal policy in

such a setup, our paper has inevitably left several questions unanswered and taken a number

of shortcuts, all of which constitute interesting areas for future research and investigation. We

list some of these we view as particularly important here:

1. Our damage function enabled us to abstract from emissions in the rest of the world.

Though very convenient, this approach left out several interesting considerations. The

�rst is the interaction between US and global emissions.

2. The second is the potential impact of US transition to clean technology on technology
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choices in the rest of the world. In particular, to the extent that there is such an impact,

optimal policy may be more aggressive (for reasons discussed in Acemoglu et al., 2012a)

because it might have the power to also induce a switch to clean technology in the rest

of the world also.

3. These concerns naturally �t into another important topic: game-theoretic interactions in

emissions and technology choice across several countries in the global economy (Harstad,

2012, Dutta and Radner, 2006).

4. For reasons we have explained, we did not allow for nonlinear threshold e¤ects in the

impact of atmospheric carbon on economic e¢ ciency. Such nonlinearities are likely to be

important and their exact position might be uncertain. Incorporating such nonlinearities,

together with an explicit approach to uncertainty along the lines of Weitzman (2009),

would be an important area for future research. This would also necessitate a much more

detailed investigation of the interactions between US emissions and the rest of the world.

5. Our optimal policies are characterized under the assumptions of commitment to the

policy sequence by the social planner. In the absence of such commitment, there will

be a time inconsistency problem. An obvious important next step is to characterize

time-consistent optimal policy.

6. Another interesting area is to investigate the interactions between international trade,

technology and emissions (see Hemous, 2012).
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