Competitive Search and Competitive Equilibrium

Robert Shimer

Nemmers Prize Conference May 17, 2013

Two Organizing Thoughts

🔲 little model

intuition

Foundations of Competitive Equilibrium

- how are prices formed without a Walrasian auctioneer?
 - fundamental question in search theory
- approach taken here: rethink what competitive equilibrium means
 - ▷ illustrate with a simple model
 - show usefulness through several extensions
 - o search frictions and intermediation
 - o risk aversion and inefficiency
 - o heterogeneous assets and private information

Little Model

two periods

- unit measure of risk-neutral consumers
 - nonnegative consumption of "fruit"
 - \triangleright endowed with a single "tree" that has dividend δ
 - \blacktriangleright heterogeneous discount factors β , distribution G with density g

trade trees for fruit

Competitive Equilibrium

Competitive Equilibrium

individuals choose consumption and savings to maximize their utility

 $\max_{c,k'} c + \beta \delta k'$

subject to the budget constraint

$$c + pk' = \delta + p$$

and nonnegativity constraints $c, k' \ge 0$, taking the price p as given

denote the solution to this problem as $C(\beta; p)$

D markets clear: $\int C(\beta; p) g(\beta) d\beta = \delta$

Competitive Equilibrium

individuals choose consumption and savings to maximize their utility

 $\max_{c,k'} c + \beta \delta k'$

subject to the budget constraint

$$c + pk' = \delta + p$$

and nonnegativity constraints $c, k' \ge 0$, taking the price p as given

denote the solution to this problem as $C(\beta; p)$

Theorem 1.1 markets clear: $\int C(\beta; p) g(\beta) d\beta = \delta$

\square how does market achieve the equilibrium price p^* ?

Alternative Approach

Concept

- \Box individuals submit buy and sell schedules, $q_b(p;\beta)$ and $q_s(p;\beta)$
 - \triangleright commitment to buy (sell) q_b (q_s) units at price p
- \Box let $\Theta(p)$ be the buyer-seller ratio at $p, \Theta : [0, \infty) \mapsto [0, \infty]$
- **there is rationing if** $\Theta(p) \neq 1$:
 - \triangleright sellers sell with probability $\min\{1, \Theta(p)\}$
 - \triangleright buyers buy with probability $\min\{1, \Theta(p)^{-1}\}$
- \square can think of separate "markets" distinguished by p

Definition of Equilibrium I

individuals choose demand and supply schedules:

$$\max_{q_b} \int (\beta \delta - p) \min\{1, \Theta(p)^{-1}\} q_b(p) dp + \max_{q_s} \int (p - \beta \delta) \min\{1, \Theta(p)\} q_s(p) dp$$

subject to the resource constraints

$$\int pq_b(p)dp \le \delta \text{ and } \int q_s(p)dp \le 1$$

taking as given $\Theta(p)$

 \Box solution to this problem is $q_b(p;\beta)$ and $q_s(p;\beta)$

can solve the two problems separately

Definition of Equilibrium II

compute measure of buyers and sellers at prices below *p*:

$$\mu_b(p) = \int_0^p \int q_b(p';\beta)g(\beta) \, d\beta \, dp'$$
$$\mu_s(p) = \int_0^p \int p' q_s(p';\beta)g(\beta) \, d\beta \, dp'$$

• "markets clear":
$$\Theta(p) = \frac{d\mu_b(p)}{d\mu_s(p)}$$

▷ no restriction on $\Theta(p)$ if $d\mu_b(p) = d\mu_s(p) = 0$

Equilibrium Characterization

bang-bang solution

▶ buy price
$$p_b(\beta) = \arg \max_p(\beta \delta - p) \min\{1, \Theta(p)^{-1}\}$$

▶ sell price $p_s(\beta) = \arg \max_p(p - \beta \delta) \min\{1, \Theta(p)\}$

$$\Theta(p) = \begin{cases} \infty \\ 1 \\ 0 \end{cases} \Leftrightarrow p \stackrel{\leq}{\equiv} p^*$$

$$\square \text{ combine: } \beta \delta \gtrless p^* \Rightarrow \begin{cases} p_b(\beta) = p^* \\ p_b(\beta) \le p^* \\ p_b(\beta) < p^* \end{cases} \text{ and } \begin{cases} p_s(\beta) > p^* \\ p_s(\beta) \ge p^* \\ p_s(\beta) = p^* \end{cases}$$

 $\square \text{ market clearing: } p^*G(p^*/\delta) = \delta(1 - G(p^*/\delta))$

Summary

- equilibrium allocation is competitive
- we can answer what happens if individuals try to trade at other prices
- we can extend the model in many directions
 - search frictions
 - ▷ risk aversion
 - ▶ indivisibilities
 - heterogeneous assets
 - ▷ private information

Search Frictions

Concept

rationing occurs on both sides of the market:

- ▷ sellers sell with probability $\pi_s(\Theta(p)) \le \min\{1, \Theta(p)\}$
- \triangleright buyers buy with probability $\pi_b(\Theta(p)) \leq \min\{1, \Theta(p)^{-1}\}$
- $\triangleright \pi'_s > 0 > \pi'_b$ and $\pi_s(\theta) = \theta \pi_b(\theta)$

individuals choose demand and supply schedules:

$$\max_{q_b} \int (\beta \delta - p) \pi_b(\Theta(p)) q_b(p) dp + \max_{q_s} \int (p - \beta \delta) \pi_s(\Theta(p)) q_s(p) dp$$

subject to the resource constraints

$$\int pq_b(p)dp \leq \delta \text{ and } \int q_s(p)dp \leq 1$$

market clearing condition as before

Example

- \Box three types: $\beta = \frac{1}{2}, 1, \frac{3}{2}$,
- \square $\pi_s(\theta) = \alpha \sqrt{\theta}$ (plus boundary conditions to ensure $\pi_s(\theta) \le \min\{1, \theta\}$)
- **u** suppose $\beta = 1$ does not trade
 - $\triangleright \beta = \frac{1}{2}$ sells to $\beta = \frac{3}{2}$ at p = 1

this cannot be an equilibrium:

- $\triangleright \beta = 1$ can profitable sell to $\beta = \frac{3}{2}$ at $1 + \varepsilon$
- $\triangleright \beta = 1$ can profitably buy from $\beta = \frac{1}{2}$ at 1ε

 $\triangleright \beta = 1$ acts as an intermediary

• if g(1) is small, both intermediated and disintermediated trade

o if g(1) is large, all trade is intermediated

Risk Aversion

Risk Aversion

D preferences $\mathbb{E}u(c_1, c_2, \beta)$

if individuals can avoid risk (insurance, law of large numbers):

$$\triangleright c_1 = \delta + \int p \big(\pi_s(\Theta(p)) q_s(p) - \pi_b(\Theta(p)) q_b(p) \big) dp$$

$$\triangleright c_2 = \delta \Big(1 + \int \big(\pi_b(\Theta(p)) q_b(p) - \pi_s(\Theta(p)) q_s(p) \big) \Big) dp$$

similar to previous problem

Indivisibilities

individuals must choose one buy price and one sell price

- irrelevant with risk-neutrality
- important with risk-aversion
- **D** preferences $\mathbb{E}u(c_1, c_2, \beta)$

probability c_1 c_2 $\pi_s(\Theta(p_s))\pi_b(\Theta(p_b))$ p_s δ^2/p_b $\pi_s(\Theta(p_s))(1-\pi_b(\Theta(p_b)))$ $\delta+p_s$ 0 $(1-\pi_s(\Theta(p_s)))\pi_b(\Theta(p_b))$ 0 $\delta+\delta^2/p_b$ $(1-\pi_s(\Theta(p_s)))(1-\pi_b(\Theta(p_b)))$ δ δ

incomplete markets skews towards safer behavior

reduction in the supply of intermediation, inefficiency

Heterogeneous Assets and Private Information

Heterogeneous Assets

 \Box trees are heterogeneous in terms of δ

risk-neutrality and no search frictions for simplicity

 \blacktriangleright joint distribution $G(\beta, \delta)$

 \Box if δ is observable:

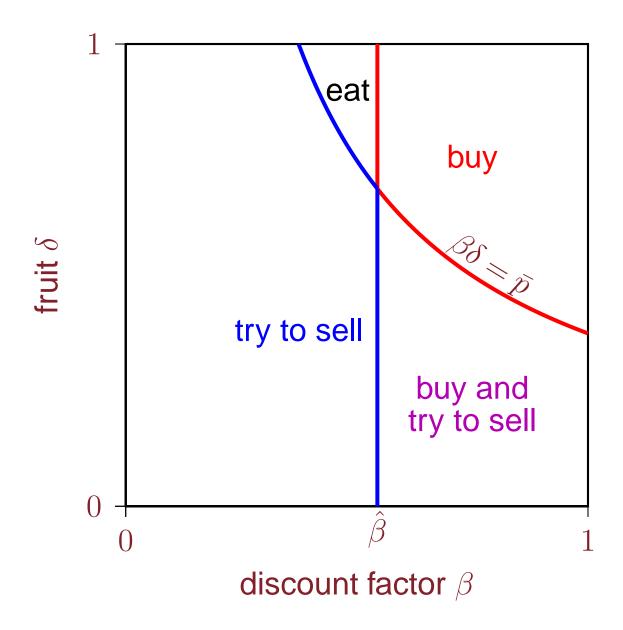
all assets have the same price-dividend ratio

nothing important changes

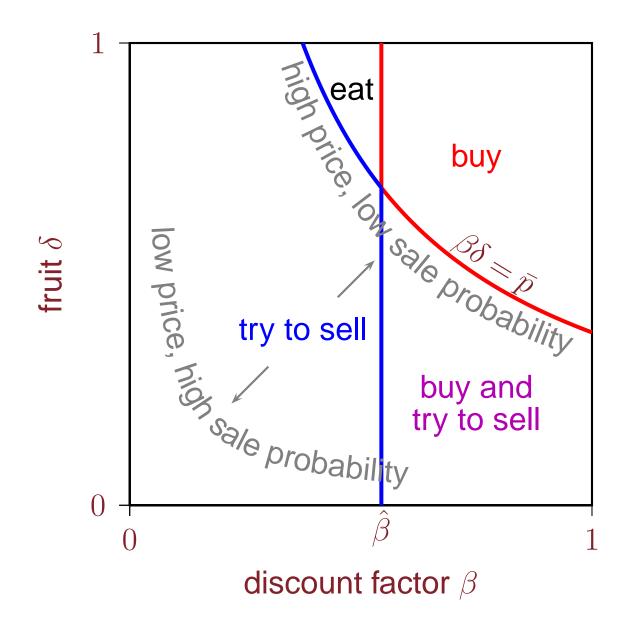
Private Information

- \Box only the seller observes δ : must model buyers' beliefs
- $\square \beta$ is observable:
 - separating equilibrium
 - patient individuals buy and impatient individuals attempt to sell
 - ▷ higher quality assets sell at higher price with lower probability
 - > no "intermediation," i.e. simultaneous buying and selling
- $\square \beta$ is unobservable:
 - \blacktriangleright semi-pooling equilibrium based on "continuation value" $\beta\delta$
 - patient individuals buy and impatient individuals attempt to sell
 - \blacktriangleright higher $\beta\delta$ sold at higher price with lower probability
 - "intermediation" by patient individuals with bad assets

Illustration



Illustration



Conclusion

- competitive search equilibrium offers a flexible framework
- close link between search frictions and private information
 - similar notions of equilibrium
 - ▷ similar outcomes:
 - o probabilistic trading
 - o intermediation

Competitive Search and Competitive Equilibrium

Robert Shimer

Nemmers Prize Conference May 17, 2013