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1 Introduction

Many economic settings are characterized by the presence of nonlinear relationships. Nonlin-

earity may arise due to the presence of risk aversion, substitution effects and complementar-

ities in production, or nonlinear constraints such as borrowing restrictions or budget kinks,

for example. Such nonlinearities are a pervasive feature of dynamic structural models.

On the other hand, dynamic econometric analysis has traditionally been based on linear

methods. Vector autoregression (VAR) methods are commonly used to document the dy-

namic propagation of shocks in linear systems. As an example, in the analysis of earnings and

consumption dynamics, covariance-based methods motivated by linearized representations

are prominent in the literature (Hall and Mishkin, 1982, Blundell, Pistaferri and Preston,

2008).

In this paper we review recent work in panel data analysis which demonstrates the pos-

sibility to identify and estimate general nonlinear dynamic systems. Our main focus is on

the development of flexible estimation methods, with the ability to allow for the presence

of time-invariant or time-varying latent variables. Such latent variables are important to

capture unobserved heterogeneity and unobserved state variables.

The motivation for those methods is twofold. A first aim is to relax linearity assumptions

and reveal empirical nonlinearities in the data. Returning to the example of earnings and

consumption, nonlinear persistence and propagation of shocks in earnings has been shown to

be a feature of the PSID in the United States, and to be also present in Norwegian admin-

istrative data (Arellano, Blundell and Bonhomme, 2016). In addition, nonlinearities in the

earnings process have implications for the nature of earnings risk, and thus for consumption

and saving decisions (Arellano, 2014).

A second motivation for nonlinear panel data methods is to be able to model and estimate

flexible reduced forms that are compatible with classes of structural dynamic models. We

review several workhorse models in the literature, including life-cycle models of nondurable

or durable consumption, intensive or extensive labor supply, saving behavior, and models

of firm-level production functions. The nonlinear reduced forms of all these models may be

analyzed and estimated using the methods reviewed in this paper.

The focus on the nonlinear reduced forms of dynamic models is useful for several reasons.

We show that policy-relevant quantities such as average marginal propensities to consume

or measures of insurability to income shocks may be recovered from the joint reduced-form
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distribution, without the need to fully specify a structural model. These quantities are ob-

tained from the nonlinear policy rules of the dynamic problem, without resorting to linearized

approximations.

Panel data-based nonlinear reduced-form methods offer a significant advantage compared

to their cross-sectional or time-series counterparts in the way they allow for latent variables.

Under suitable dynamic assumptions, panel data provides the opportunity to nonparametri-

cally identify some latent variables that are key state variables in the decision problem, such

as individual ability or preferences, firm productivity, or latent human capital profiles. This

leads to a richer set of conditioning variables, identified from the panel dimension.

A well-known drawback of any reduced-form analysis compared to a structural approach

is the inability to perform general counterfactual exercises. Fully structural approaches are

commonly used in the settings that we take as examples in this paper (e.g., Gourinchas

and Parker, 2002, Guvenen and Smith, 2014). However, structural estimation requires the

researcher to specify all aspects of the model, including often tightly specified functional

forms.

An important advantage of a nonlinear reduced form approach is to document moments

and other features of the distribution of the observed data and the latent variables, which

provide robust targets for a structural estimation exercise. In addition, both identification

and estimation of a nonlinear reduced form may be a useful first step even when the final

goal is to take a structural model to the data.

A central feature of the dynamic models we consider is the presence of dynamic restric-

tions on sequential conditioning sets. Those are typically the consequence of Markovian

assumptions in the economic model. Such assumptions provide dynamic exclusion restric-

tions which are instrumental in establishing identification, as shown in Hu and Shum (2012)

and the econometric literature on nonlinear models with latent variables recently reviewed in

Hu (2015). Existing identification results allow for time-invariant heterogeneity (that is, for

“fixed-effects”), but also for the presence of time-varying unobserved state variables under

suitable conditions.

Nonlinear panel data approaches may help on the estimation side too. In linear models,

panel data estimators often show unstable behavior; see for example Banerjee and Duflo

(2003). One source of such instability is model misspecification, providing a motivation for

relaxing linearity assumptions. The goal of a nonlinear panel data approach to estimation
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is to achieve flexibility in dynamic contexts, similarly to the aim of matching approaches in

cross-sectional settings.

Flexible estimation of nonlinear dynamic reduced forms may be achieved by relying on

sieve semi- or nonparametric approaches (Chen, 2007), where the dimension of the model

grows with the sample size. In this review we focus in particular on the quantile-based

estimator developed in Arellano and Bonhomme (2016) for continuous outcome variables.

The approach we advocate here has a wide scope, and this review only touches the tip of

the iceberg of potential applications. In particular, we mostly focus on single agent models

with continuous outcomes. In the last section we discuss discrete choice models, which have

a similar structure and have been extensively studied. An important difference with the

main focus of the paper concerns identification, which becomes more challenging in discrete

outcomes models. We also briefly mention extending the approach beyond single agent

settings, as has been recently done in Bonhomme, Lamadon and Manresa (2016a) in the

context of models of workers and firms with two-sided heterogeneity.

The outline is as follows. In Section 2 we describe the reduced-form patterns of the

dynamic models we study, and we provide specific economic examples in Section 3. In

Section 4 we discuss what can be learned from reduced-form distributions in this context.

Sections 5, 6, and 7 are devoted to identification, specification, and estimation of nonlinear

dynamic models, respectively. Lastly, we discuss related approaches in Section 8, and we

conclude in Section 9 with directions for future work.

2 Nonlinear dynamic econometric systems

In this section we first describe the general econometric pattern of the reduced form in a

class of heterogeneous agent dynamic structural economic models. In the next section we

will provide several examples of structural models which are special cases of the class we

consider.

2.1 Models with time-invariant heterogeneity

The model has N agents (e.g., firms, households, or individuals) observed over T periods, and

outcome variables Yit and covariates Xit, observed for i = 1, ..., N and t = 1, ..., T . The Y ’s

typically include choice variables and payoff variables, while the X’s may be state variables

that are observed by the econometrician. Let (Yi, Xi) = (Yi1, ..., YiT , Xi1, ..., XiT ) be the
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vector of observations for agent i. In addition, there are determinants αi that the researcher

does not observe. Here we consider the case where αi represents time-invariant unobserved

heterogeneity. We will consider the case of time-varying state variables αi = (αi1, ..., αiT ) in

the next subsection.

Our aim is to characterize the nonlinear reduced form in a class of dynamic economic

models. In the models we consider, the joint distribution of observables and unobservables

has some key features, which we now discuss. Throughout we use f as a generic notation

for a distribution function, and we denote Zt
i = (Zi1, ..., Zit).

The first feature is one of limited memory. In models with time-invariant α’s, we assume

that

f(Yit |Y t−1
i , X t

i , αi) = f (Yit |Yi,t−1, Xit, Xi,t−1, αi) . (1)

Under (1), the dependence of Yit on past values of Y and X is limited to the last period. This

could be generalized to allow for dependence on the last s periods, where s ≥ 1. As we will

see later in this paper, such Markovian conditional independence restrictions are natural in

many economic settings where the relevant state variables are low-dimensional, and general

identification results may be established under such conditions.1 Note that, in the present

setting, the Markov property holds conditionally on latent variables, and the models will

generally not be unconditionally Markovian.

The second main feature of the models we consider is one of sequential exogeneity ; that is,

we do not rule out dynamic feedback conditionally on a fixed effect.2 Moreover, the feedback

process is also assumed to have limited memory given αi. Specifically, we assume that

f(Xit |Y t−1
i , X t−1

i , αi) = f(Xit|Yi,t−1, Xi,t−1, αi). (2)

Such feedback effects are often key ingredients in dynamic structural models, since future

state variables X (such as labor market experience) are typically affected by past choices Y

(such as participation).

1An interesting extension of (1) is to assume that period-t outcomes are conditionally independent of the
past, given a sufficient statistic which is a low-dimensional function Zit = g(Y t−1

i , Xt
i ) of past Y ’s and X’s,

as in
f(Yit |Y t−1

i , Xt
i , αi) = f(Yit |Zit, αi).

2Specifically, the Chamberlain-Sims strict exogeneity condition does not hold (Chamberlain, 1982):

f(Yit |Y t−1
i , Xt

i , αi) 6= f(Yit |Y t−1
i , XT

i , αi),

and the conditional distribution f(Yit |Y t−1
i , Xt

i , αi) is regarded as the object of interest.
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Equipped with (1) and (2), and continuing with the case where the unobserved α’s are

time-invariant, the conditional likelihood function for agent i given αi and initial conditions

takes the form

f(Yi2, Xi2, ..., YiT , XiT |Yi1, Xi1, αi)

=
T∏
t=2

f (Yit |Yi,t−1, Xit, Xi,t−1, αi) f(Xit|Yi,t−1, Xi,t−1, αi). (3)

Note that, in this first-order Markovian setup, initial conditions consist of the vector (Yi1, Xi1).

The presence of the latent α’s is a third key feature of the model. Examples of un-

observed state variables abound in economics, such as individual ability or preferences, or

firm productivity. In fixed-effects approaches, the time-invariant αi’s are conditioned upon

and estimated. In random-effects approaches, which we will focus on in this paper, the

conditional likelihood function in (3) is augmented with a specification for the conditional

distribution of αi given Yi1 and Xi1,

f(αi |Yi1, Xi1). (4)

We will describe such approaches in some detail in Section 6.

2.2 Time-varying unobserved state variables

An important extension of the model is to allow for time-varying unobserved state variables

αit. In that case, we replace (1) and (2) with

f(Yit |Y t−1
i , X t

i , α
t
i) = f (Yit |Yi,t−1, Xit, Xi,t−1, αit, αi,t−1) , (5)

and

f(Xit|Y t−1
i , X t−1

i , αti) = f(Xit|Yi,t−1, Xi,t−1, αit, αi,t−1), (6)

respectively, and add the following assumption on the feedback process for α’s:

f(αit|Y t−1
i , X t−1

i , αt−1
i ) = f(αit|Yi,t−1, Xi,t−1, αi,t−1). (7)

In this case the complete data likelihood function, which is the joint likelihood of observed

and latent variables, takes the following form:

f(Yi2, Xi2, αi2, ..., YiT , XiT , αiT |Yi1, Xi1, αi1)

=
T∏
t=2

f (Yit |Yi,t−1, Xit, Xi,t−1, αit, αi,t−1)

× f(Xit|Yi,t−1, Xi,t−1, αit, αi,t−1)f(αit|Yi,t−1, Xi,t−1, αi,t−1).
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Fixed-effects approaches do not have the ability to handle time-varying unobservables, so

they are not feasible in this case. In a random-effects approach the model is completed by

specifying the conditional distribution of αi1 given Yi1 and Xi1.

We next illustrate through various examples the ability of this framework to capture

dynamic relationships in a number of structural economic models.

3 Structural economic examples

In this section we consider several examples of dynamic structural models with heterogeneous

agents, and we emphasize some features of their nonlinear reduced forms.

3.1 Models of earnings risk

We start by describing models for the dynamics of household earnings. The properties of

earnings processes, such as the presence of nonlinearities and the form of heterogeneity,

have important implications for the evolution of consumption and saving in life-cycle mod-

els (Arellano, 2014). We will later consider models of consumption and other household

decisions.

Let us focus on two different processes for the log-earnings lnWit of household i in period t,

with distinct dynamic properties: a first-order Markov process, and a process with transitory

innovations. In the first specification, log-earnings follow the process

lnWit = QW (lnWi,t−1, Uit), (8)

where Uit are independent of W t−1
i and independent over time. The nonlinear function QW

is not restricted a priori. A simple, popular example of (8) is an autoregressive process of

the form lnWit = µ+ ρ lnWi,t−1 + Uit, with |ρ| < 1.

In the second specification, log-earnings are the sum of a persistent η component and a

transitory ε component,

lnWit = ηit + εit, ηit = Qη(ηi,t−1, Vit), (9)

where Vit are independent of ηt−1
i and all εis, the V ’s and ε’s are independent over time,

and Qη is a nonlinear function. Persistent/transitory dynamic specifications such as (9) are

very common in the literature; see for example Meghir and Pistaferri (2011). A prominent

special case of (9) is the linear permanent/transitory model with ηit = ηi,t−1 + Vit. Arellano
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et al. (2016) consider a more general, quantile-based version of (9) which allows for nonlinear

transmission of earnings shocks. They provide evidence of nonlinear effects based on PSID

data and Norwegian administrative data.

Those two earnings processes may easily be extended to allow for age or time variation,

where the collinearity between age and time may be dealt with by pooling different cohorts.

In addition, both (8) and (9) may be extended to allow for unobserved heterogeneity. As

an example, the Markov transitions Qη in (9) may allow for an unobserved time-invariant

factor ζ i, as in ηit = Qη(ηi,t−1, ζ i, Vit).

Such nonlinear specifications may also be used to model the dynamic evolution of other

state variables which are relevant to measuring the risk faced by households or individuals.

Beyond income risk, similar statistical models may be suitable in the context of health risk

or financial/wealth risk, for example.

3.2 Earnings and consumption dynamics

Our second example is a standard incomplete market model of consumption and saving over

the life-cycle (e.g., Huggett, 1993, Kaplan Violante, 2010). An agent in the model is a

household who earns Wit every period until retirement at age T . The household consumes

Cit, and has access to a risk-free bond, the quantity Ait of which evolves according to the

following budget constraint

Ait = (1 + r)Ai,t−1 +Wi,t−1 − Ci,t−1, (10)

with the possible addition of borrowing constraints.

Preferences are separable over time, with period-specific preferences u(Cit, νit) over con-

sumption. The time-varying taste shifters νit are not observed by the econometrician. In a

specification without time-invariant heterogeneity in preferences, the νit are assumed to be

independent over time. In addition, the utility function may also depend on a time-invariant

household unobserved factor ξi, reflecting permanent heterogeneity in preferences.

Time is discounted at rate β. Household i maximizes the expected intertemporal dis-

counted sum of utilities

E1

(
T∑
t=1

βt−1u(Cit, νit)

)
,

subject to (10). Household log-earnings lnWit evolve stochastically, following either the

Markov process (8) or the persistent/transitory process (9).

7



To derive the form of the consumption policy rule in the model, let us focus on the case

where agents’ information sets and beliefs are standard, in that Wit (respectively, ηit and

εit) are known to the agent at time t, while only the distribution of future W ’s (resp., η’s

and ε’s) is known to them, not their specific realizations. Under standard conditions on the

utility function, the consumption rule then takes the following form in the case of process

(9):

Cit = gt (Ait, ηit, εit, νit) , (11)

where gt is an age-specific function and the relevant state variables are period-t assets, the

two earnings components, and the taste shifters, in addition to age. In the case of process

(8) there is one state variable less, and consumption takes the form (for a different function

gt):

Cit = gt (Ait,Wit, νit) . (12)

When the taste shifter νit is scalar and the marginal utility of consumption is increasing

with respect to it, then both consumption functions (11) and (12) are increasing in their

last argument. In this particular case, the consumption function gt may be shown to be

identified under suitable conditions, up to normalizing the distribution of νit. In the ab-

sence of restrictions on the independent taste shifters νit, average derivative effects such as

partial insurance coefficients will still be identified even though gt is not. We will discuss

identification in Section 5.

To summarize the description of the model, the evolution of log-earnings, consumption,

and assets is given by either (8)-(12) or (9)-(11) depending on the earnings process considered,

and the budget constraint (10). Given the stochastic assumptions that we have made, the

reduced form of the model is thus a particular example of the setup introduced in Section 2,

with Yit = Cit and Xit = (Wit, Ait). In the case of the permanent/transitory earnings process

(9), the time-varying unobserved state variables are the persistent earnings components

αit = ηit. In the case of process (8) with unobserved time-invariant earnings heterogeneity

αi = ζ i, the latter is the latent state variable.

As shown in Arellano et al. (2016), this simple framework may be generalized in a number

of ways, through a simple modification of the arguments of the consumption function. As

already discussed, an empirically relevant extension is to allow for time-invariant unobserved

heterogeneity in households’ preferences (or discount factors) ξi. The resulting consumption
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function then takes the following form in the case of process (9):

Cit = gt (Ait, ηit, εit, ξi, νit) . (13)

As a further extension, one may allow for the presence of consumption habits, leading to the

following form for the consumption rule:

Cit = gt (Ci,t−1, Ait, ηit, εit, ξi, νit) . (14)

Other extensions include allowing for advance information on future earnings shocks, or for

different types of assets with different returns, possibly differing in their degree of liquidity

as in Kaplan and Violante (2014). In the last case, the composite consumption rule becomes

an age-specific function of all types of assets, in addition to the earnings components and

unobserved tastes.

3.3 Consumption and labor supply

Consider now an extension of the life-cycle model of the previous subsection which allows for

individual labor supply decisions. Household i comprises two individuals, who work H1it and

H2it hours in period t at hourly wages w1it and w2it, respectively. As in Blundell, Pistaferri

and Saporta-Eksten (2016), a unitary household maximizes the expected discounted sum

E1

(
T∑
t=1

βt−1u(Cit, H1it, H2it, νit)

)
,

subject to

Ait = (1 + r)Ai,t−1 + w1i,t−1H1i,t−1 + w2i,t−1H2i,t−1 − Ci,t−1,

with additional constraints on assets and hours worked.

Log-wages lnw1it and lnw2it follow dynamic processes of the form (8) or (9), with different

parameters for the two household members. In addition, wage shocks such as (U1it, U2it) in

(8), and (V1it, V2it) and (ε1it, ε2it) in (9), are allowed to be dependent within households.

In this model the household consumption rule and labor supply rules take the following

form in the case where individual log-wages follow permanent/transitory processes (9):

Cit = gt (Ait, η1it, η2it, ε1it, ε2it, νit) , (15)

H1it = h1t (Ait, η1it, η2it, ε1it, ε2it, νit) , (16)

H2it = h2t (Ait, η1it, η2it, ε1it, ε2it, νit) , (17)
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for some age-specific functions gt, h1t and h2t, with a similar expression when log-wages

follow process (8). In the absence of restrictions on νit and its dimensionality (beyond the

fact that the νit are independent over time and independent of the state variables), one

may identify general average derivative effects in (15)-(16)-(17), as we shall see in the next

section, although it is generally not possible to fully identify the functions gt, h1t, and h2t.

This model may be generalized by allowing for an extensive participation margin. In the

absence of state-dependent costs of participation, the resulting policy rules are very sim-

ilar to (15)-(16)-(17), except that some of the labor supply outcome variables are binary

participation indicators. In the presence of costs of participation, the two lagged partici-

pation indicators enter as additional state variables, hence as additional arguments in the

consumption and labor supply rules.

3.4 Durable consumption

Following Berger and Vavra (2015), consider a standard incomplete market model with a

durable consumption margin, subject to fixed costs of adjustment. LetDit denote the durable

stock of household i in period t. The household maximizes

E1

(
T∑
t=1

βt−1u(Cit, Dit, νit)

)
,

subject to

Ait = (1 + r)Ai,t−1 +Wi,t−1 − Ci,t−1 + (1− δ)Di,t−2 −Di,t−1 − F (Di,t−1, Di,t−2), (18)

and subject to lower bounds on Dit and Ait. In (18), δ and F denote the depreciation rate

on durables and the fixed cost to adjust the durable stock, respectively.

The nondurable and durable consumption rules then take the following form, in the case

of the persistent/transitory earnings process (9):

Cit = gt (Ait, Di,t−1, ηit, εit, νit) , (19)

Dit = ht (Ait, Di,t−1, ηit, εit, νit) , (20)

with again a similar expression under process (8).3

3Note that, in this model, one may also be interested in the potential consumption decisions Cit(1) and
Cit(0) associated with the household adjusting or not adjusting the durable stock. In general, identifying
the joint reduced-form distribution of consumption of durables and nondurables, and possibly earnings
components and assets, will not be sufficient to identify the distributions of those potential consumption
choices. It would be of interest to provide sufficient (albeit model-specific) conditions for the identification
of such objects based on the reduced form.
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In addition to a partial equilibrium model, Berger and Vavra (2015) consider a general

equilibrium version of the model, where wages and interest rates are endogenous and subject

to aggregate uncertainty. Their focus is on the effect of business cycle fluctuations on durable

consumption expenditure patterns. As the consumption policy rules in (19) and (20) are

t-dependent, their general forms are unchanged in this case, although the specific forms of

the functions gt and ht differ between the partial and general equilibrium versions of the

model. In that case the reduced-form distributions vary with calendar time in addition to

age. However, in the approach pursued in this paper the effect of aggregate shocks, while

allowed for, is left un-modeled. Disentangling the effects of micro-level and macro-level

shocks in dynamic systems is an interesting question for future work.

3.5 Production function and unobserved productivity

In our last example, let now Yit denote the output of a firm i at time t. Let Kit denote

capital input, and ωit denote latent productivity, where we abstract from labor inputs for

simplicity. Production is given by

Yit = QY (Kit, ωit, εit), (21)

where εit are independent of all inputs, and independent over time. An example is a multi-

plicative specification of the form Yit = ωitQY (Kit, εit). The laws of motion of capital and

productivity are given by

Kit = (1− δ)Ki,t−1 + Ii,t−1,

ωit = Qω(ωi,t−1, Vit), (22)

where δ is the depreciation rate, Ii,t−1 is firm’s investment chosen at time t−1 which becomes

productive at t, and Vit are independent shocks. According to (22), latent productivity

follows a nonlinear first-order Markov process.

As in Olley and Pakes (1996), firms choose investment in each period in order to maximize

expected profits net of investment costs. The future ε and ω values are not observed to the

firm. The state variables at t are Kit, ωit, t itself (which reflects the economic environment

faced by the firm), and some stochastic determinants of costs νit which we assume to be

independent of other state variables and independent over time. The investment rule then

takes the form

Iit = gt(Kit, ωit, νit), (23)
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for a nonlinear function gt. In the absence of ν’s, and under monotonicity of gt in (23) with

respect to ωit, Olley and Pakes (1996) propose to invert that relationship so as to proxy for

unobserved productivity using observed quantities in a linear version of (21).4

The model of output, capital, and investment outlined here is a special case of the

setup discussed in Section 2. Estimating such a model makes it possible to take nonlinear

production functions with unobserved inputs to firm-level panel data. In addition, the

present setting may be generalized to allow for an R&D decision Rit influencing the evolution

of the latent productivity process, as in

ωit = Qω(ωi,t−1, Ri,t−1, Vit), (24)

along the lines of Doraszelski and Jaumandreu (2013).

3.6 Other examples

Dynamic economic models which have similar dynamic reduced-form implications as the ones

reviewed above are very common in the literature. Consider as an example a model where

unobserved state variables αit are dynamically affected by past decisions Yi,t−s. Such dynamic

feedback effects are present in models of endogenous human capital accumulation, such as

in the classic Ben Porath (1967) model. While the latent earnings component αit = ηit is

assumed to be strictly exogenous in (9), in the class of models considered in Section 2 the

latent ηit may be affected by past choices such as labor supply or investment. The latent

productivity process in (24) is also sequentially exogenous but not strictly exogenous, due

to it being affected by past R&D expenditures. In the identification discussion in Section 5

we will show the possibility to identify such dynamic feedback effects based on Markovian

assumptions.

In the analysis of firm decisions, models of investment, inventory and markups have

a similar structure (e.g., Aguirregabiria, 1999). The large literature on dynamic discrete

choice models also studies settings with related reduced-form implications; see, e.g., Rust

(1994) or the survey by Aguirregabiria and Mira (2010), and see Section 8 below. Many

other examples may be found in the literature on recursive macroeconomic models (e.g.,

Ljungqvist and Sargent, 2004).

4See Levinsohn and Petrin (2003), Ackerberg et al. (2015), and also Huang and Hu (2011) for related
approaches to estimating production functions.
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4 Learning from nonlinear reduced forms

In this section we turn to the question of how to interpret nonlinear dynamic reduced forms

such as the ones we introduced in Section 2.

To fix ideas, let us start by focusing on the simple life-cycle consumption and saving

model of Subsection 3.2, in the presence of the persistent-transitory earnings process (9)

and permanent unobserved heterogeneity in preferences ξi. In this case the reduced form is

a joint distribution of consumption, assets, earnings, and latent earnings components, over

time, with the addition of the time-invariant unobserved heterogeneity.

A first observation is that average derivative effects on consumption, assets and earnings

may be recovered from the joint reduced-form distribution. As an example, the following

average marginal propensity to consume out of the persistent earnings component ηit is

identified from the reduced-form, as

φC(a, η, ε, ξ) = E
[
∂gt (a, η, ε, ξ, νit)

∂η

]
=

∂

∂η
E [Cit |Ait = a, ηit = η, εit = ε, ξi = ξ] . (25)

Equation (25) is a consequence of the independence between the taste shifters νit and the

state variables (Ait, ηit, εit, ξi); see Matzkin (2013), for example. In general, the conditional

distribution of the individual derivative effect ∂gt (a, η, ε, ξ, νit) /∂η (over realizations of the

taste shifters νit) is not identified, although identification holds in the special case where the

consumption function is increasing with respect to a scalar νit.
5

The average derivative effect in (25) is indicative of the degree of “partial insurance”

in the sense of Blundell et al. (2008), the quantity 1 − φC(a, η, ε, ξ) being a measure of

consumption insurability of shocks to the persistent earnings component ηit. It is worth

noting that, in the fully nonlinear setup considered here, 1 − φC(a, η, ε, ξ) is a nonlinear

measure of partial insurance, which is heterogeneous in various dimensions: with respect to

assets, the two earnings components, and unobserved household heterogeneity ξi. Moreover,

other average derivative effects may be similarly recovered, such as the average marginal

propensity of consume out of assets E [∂gt (a, η, ε, ξ, νit) /∂a].

The ability to recover average derivative effects based on the nonlinear reduced form

extends to models with multiple choices, such as the model of consumption and labor supply

5This condition is a rank preservation assumption, as made in Chernozhukov and Hansen (2005), for
example.
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outlined in Subsection 3.3. In that model, a particularly interesting effect is the following

average derivative (for k = 1, 2 and ` = 1, 2 denoting the two household members):

φHk`
(a, η1, η2, ε1, ε2, ξ) = E

[
∂hkt (a, η1, η2, ε1, ε2, ξ, νit)

∂η`

]
=

∂

∂η`
E [Hkit |Ait = a, η1it = η1, η2it = η2, ε1it = ε1, ε2it = ε2, ξi = ξ] .

(26)

The quantity 1− φHk`
(a, η1, η2, ε1, ε2, ξ) is a measure of an individual’s labor supply insura-

bility to persistent shocks to her own income (when k = `) or to her spouse’s income (when

k 6= `). When adding a labor force participation decision to the model, one may similarly

define measures of insurability of total labor supply, including both positive and zero hours,

to income shocks.

In addition to average derivatives of choice variables such as consumption or labor supply,

one can also document nonlinear measures of persistence of the state variables. An important

example is the persistent/transitory model (9) of earnings risk. Following Arellano et al.

(2016) one may compute the following measure of persistence of the latent component ηit,

ρ(ηi,t−1, τ) = E
[
∂Qη(ηi,t−1, τ)

∂η

]
,

at different values of the state ηi,t−1 and the innovation τ . This quantity will be identified

under the assumption that Qη be strictly increasing in its second argument, and Vit be

normalized to follow a standard uniform random variable. In that case τ belongs to the

unit interval. Note that making those assumptions on Qη and Vit amounts to expressing

the shocks to the persistent earnings component in rank form. Similar measures could be

computed for latent firm-level productivity in the production function example discussed in

Subsection 3.5.

The availability of a nonlinear dynamic reduced-form specification also allows one to per-

form impulse response analysis. While it is very common to document impulse responses

based on linear vector autoregressions (VARs), a disadvantage of such analyses is that VAR

models are linear ones, and may thus not be appropriate to capture the rich empirical non-

linearities predicted by a structural model. With this motivation in mind, Berger and Vavra

(2014) revisit the question of the cyclical behavior of durable consumption expenditures

using a nonlinear VAR method proposed in Auerbach and Gorodnichenko (2012). This

analysis provides a complement to the structural model in Berger and Vavra (2015), which
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we outlined in Subsection 3.4. The nonlinear panel data methodology described in this pa-

per provides a flexible alternative to such approaches, which (when nonparametric) has the

ability to fully nest the structural model of interest, while it also allows one to account for

the presence of state variables that are not observed by the econometrician.

However, in contrast to fully structural approaches, identifying and estimating the non-

linear reduced form in a dynamic economic model is not sufficient to assess the counterfactual

predictions of the model. As an example, in the life-cycle consumption and saving model

of Subsection 3.2, consider a counterfactual exercise consisting in a modification of the pro-

cess of earnings dynamics, such as an increase in its degree of persistence. In such a case

the consumption rule will most likely be different in the new regime, due to the fact that

consumption decisions are partly determined by the nature of earnings risk. Hence the

nonlinear reduced-form distribution of consumption is not invariant to the counterfactual

change. In other words, reduced-form exercises, even flexible ones, are subject to the Lucas

(1976) critique.

Nevertheless there are important benefits to a nonlinear dynamic approach based on

flexible reduced forms in order to identify, estimate, and understand structural economic

models. Regarding identification, as we will describe in the next section, the recent liter-

ature on nonlinear models with latent variables provides conditions under which dynamic

panel data models are nonparametrically identified based on Markovian restrictions. Ex-

isting results allow for the presence of time-invariant heterogeneity, but also time-varying

unobserved state variables. Hence, starting from a structural model, these results may be

useful in a first step to identify the joint distribution of observed variables and unobserved

heterogeneity, before turning in a second step to the specific analysis of the identification of

the structural parameters.

A general nonlinear specification of the dynamic relationships may be useful to estimate

structural models too. Estimates of the nonlinear reduced form provide robust targets for the

structural model, which could be used in simulated method of moments or indirect inference

estimation, for example. They also provide tools to test specific implications of a structural

model. Many economic models have predictions for the full distribution of the data, beyond

first and second moments, for which the nonlinear approach described here is well-suited.

In addition, the fact that the nonlinear reduced form contains observed and unobserved

variables (to the econometrician) may also be useful for structural estimation.
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5 Identification based on short panels

As illustrated in Section 2, dynamic economic models typically feature conditional indepen-

dence restrictions, which hold as a result of Markovian assumptions on state dependence.

They also feature the presence of latent variables, either time-invariant or time-varying.

The literature on nonlinear models with latent variables has established general conditions

guaranteeing nonparametric identification in such settings, based on short panels. In lin-

ear models with independent errors, nonparametric identification follows from the Kotlarski

(1967) lemma and related results based on nonparametric deconvolution. Hall and Zhou

(2003), Hu (2008), Hu and Schennach (2008), and Hu and Shum (2012), among others, ex-

tend the identification argument to nonlinear models; see Hu (2015) for a recent survey of

this literature.

The general setup analyzed in Hu and Shum (2012, HS hereafter), which builds on the

static case studied in Hu and Schennach (2008), is useful for our purpose since it is based

on Markovian dynamic restrictions. The setup applies to cases where latent variables αit are

time-varying. Models with time-invariant αi, leaving the conditional distribution of αi given

initial conditions unrestricted, will also be covered as special cases of the general framework.

The analysis in HS relies on the following two conditional independence assumptions, where

we denote Zit = (Yit, Xit).

Assumption 1

(i) (Zit, αit) is conditionally independent of (Zt−2
i , αt−2

i ) given (Zi,t−1, αi,t−1).

(ii) Zit is conditionally independent of αi,t−1 given (Zi,t−1, αit).

Hu and Shum refer to (i) and (ii) in Assumption 1 as “first-order Markov” and “limited

feedback” assumptions, respectively. Part (i) is a consequence of the Markovian restrictions

in (5), (6), and (7). In contrast, part (ii) is an additional assumption on the reduced-form

system. Note that this assumption is satisfied in all the examples described in Subsections

3.1 to 3.5. Under the two parts in Assumption 1, HS establishes nonparametric identification

of the Markovian law of motion f(Yit, Xit, αit |Yi,t−1, Xi,t−1, αi,t−1) in a fully nonstationary

setting, based on T = 5 periods of data, under a number of additional assumptions which

we now briefly discuss.

The identification argument in HS relies on invertibility, or “completeness” conditions

which certain operators are assumed to satisfy. Such assumptions are commonly made in
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the literature on nonparametric instrumental variables (Newey and Powell, 2003). Com-

pleteness intuitively requires some nonparametric counterpart to a rank condition to hold.

It is worth noting, however, that completeness conditions are high-level ones, and that they

are not testable in general (Canay et al., 2013). Primitive conditions for completeness have

only been derived so far in a handful of cases (D’Haultfoeuille, 2011, Hu and Shiu, 2012).

In addition, the conditions in HS require f(Yit, Xit |Yi,t−1, Xi,t−1, αit) to depend on (Yit, Xit),

(Yi,t−1, Xi,t−1), and αit, in such a way that a certain spectral decomposition is unique. Lastly,

in HS a scaling assumption is imposed, which consists in assuming that, for example, for

some (y, x) the conditional expectation E(Yit |Yi,t−1 = y,Xi,t−1 = x, αi,t−1 = α) is strictly

increasing in α. In that case, identification is defined up to an arbitrary monotonone trans-

formation of αi,t−1.

Earnings and consumption dynamics (continued). Consider as an example the life-

cycle model of earnings, consumption and saving described in Subsection 3.2, in the presence

of the persistent/transitory earnings process (9). In that case, (Yit, Xit) contains log-earnings,

consumption, and assets, αit is the latent persistent earnings component, and Assumption

1 is satisfied due to the dynamic properties of the model. Hence the model falls into the

general setup considered in HS, so identification follows provided their other assumptions

are also satisfied; in particular, T ≥ 5 periods of continuous or mixed discrete/continuous

observations are needed for their result to hold.

Alternatively, in this setting, Wilhelm (2015) provides a constructive identification ar-

gument that may be applied to the earnings process alone. The consumption function may

then be identified by solving recursive nonparametric instrumental variables problems us-

ing lags and leads of earnings as instruments; see Arellano et al. (2016). Those restrictions

extend the instrumental variables restrictions used in Hall and Mishkin (1982) and the subse-

quent literature on consumption partial insurance to a fully nonlinear setting. These authors

also provide conditions for identification in the presence of latent time-invariant preference

heterogeneity ξi.

6 Specifying nonlinear dynamic systems

The reduced-form distributions in the dynamic models we consider consist of two main

parts: the conditional distributions of outcomes (or covariates) given past values, and the
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distribution of unobserved heterogeneity. We now describe how each part may be specified

in a flexible, yet tractable manner.

6.1 Flexible conditional distributions

Flexible models of distributions may be constructed based on sieve approaches, such as

orthogonal polynomial or spline specifications; see Gallant and Nychka (1987), and Chen

(2007) for a review of sieve methods in econometrics. As a starting case, consider modeling

the distribution of a binary Xit given past values of X and Y , and some factors α. A series

specification is as follows

Pr (Xit = 1 |Yi,t−1, Xi,t−1, αi) = Λ

(
K∑
k=1

akϕk(Yi,t−1, Xi,t−1, αi)

)
, (27)

where Λ is a strictly increasing function mapping the real line to the unit interval. An ex-

ample is Λ(u) = (1+exp(−u))−1, corresponding to a series logit specification. The functions

ϕk belong to a pre-specified family such as ordinary polynomials, orthogonal polynomials,

or splines, for example. Similar specifications may be used for discrete X’s more generally.

In the presence of continuously distributed outcomes or covariates, a convenient alter-

native approach is to model conditional distributions via their inverses; that is, through

conditional quantile functions. This approach was recently proposed by Arellano and Bon-

homme (2016). Consider a linear quantile specification for the outcome variables

Yit =
K∑
k=1

ak(Uit)ϕk(Yi,t−1, Xit, Xi,t−1, αi), (28)

with a similar specification for the feedback process of sequentially exogenous covariates

Xit =
K∑
k=1

bk(Vit)ϕk(Yi,t−1, Xi,t−1, αi), (29)

for different choices of K and functions ϕk for Y and X, where U ’s and V ’s are independent

standard uniform random variables, independent over time.

It is assumed that the right-hand sides in (28) and (29) are strictly increasing in Uit and

Vit, respectively, so these equations effectively model the conditional quantile functions of

Y and X. This allows for a flexible modeling of the dependence of Y and X on their past

values and unobserved heterogeneity, for example through polynomial interaction terms. In

addition, in this specification conditioning variables may have a nonlinear effect on outcomes
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at various points of the distributions, through the U ’s and V ’s. All a and b parameters

may be allowed to vary unrestrictedly with time, thus allowing for general nonstationarity.

Arellano et al. (2016) illustrate the ability of such specifications to reveal nonlinear empirical

relationships.

The functions ak(τ) and bk(τ) in (28) and (29) are defined on the unit interval, for

τ ∈ (0, 1). Wei and Carroll (2013) proposed to specify them as piecewise-linear splines.

That is, the unit interval is divided into L + 1 sub-intervals, with knots τ 1 < τ 2 < ... < τL.

On each (τ `, τ `+1), ak(τ) and bk(τ) are linear. These functions of τ are also continuous at

τ ` and τ `+1. The parameters of the model are then the ak` = ak(τ `) and bk` = bk(τ `), for

k = 1, ..., K and ` = 1, ..., L. The functions may be extended to the tail subintervals (0, τ 1)

and (τL, 1) using a parametric form for the intercept parameters in a’s and b’s, as detailed

in Arellano and Bonhomme (2016).

In the presence of multiple covariates, this approach can be extended using triangular

specifications such as

Xmit =
K∑
k=1

bmk(Vmit)ϕk(Yi,t−1, Xi,t−1, X1it, ..., Xm−1,it, αi),

based on a sequential ordering of variables. Note that the ordering would be irrelevant in a

fully nonparametric specification.

An alternative approach, which does not require postulating such an ordering and may

thus be particularly well-suited to model the joint distribution of multiple choice variables,

is based on a copula specification. To illustrate this approach, consider modelling the distri-

bution of two outcome variables (for example, consumption and hours of work) as follows:

Y1it =
K∑
k=1

a1k(U1it)ϕk(Yi,t−1, Xit, Xi,t−1, αi),

Y2it =
K∑
k=1

a2k(U2it)ϕk(Yi,t−1, Xit, Xi,t−1, αi),

where U1it and U2it both follow standard uniform marginal distributions, and are jointly

independent of the state variables (Yi,t−1, Xit, Xi,t−1, αi). This quantile-based modeling of the

two marginal distributions is completed by specifying a copula C for the bivariate random

variable (U1it, U2it). In practice, a parametric specification for C may be based on a low-

dimensional family (such as Frank, Gumbel, or Gaussian) or on a more flexible choice such
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as the Bernstein family (Sancetta and Satchell, 2004); see Nelsen (1999) and Joe (1997) for

references on copulas.

6.2 Unobserved heterogeneity

Allowing for unobserved heterogeneity in estimation may be based on two general approaches:

fixed-effects or random-effects. In a fixed-effects approach the αi’s are conditioned upon,

and estimated together with the other parameters of the model (the ak` and bk` in the

previous subsection). Evidently, a fixed-effects approach is not able to deal with time-varying

unobserved heterogeneity such as αit.

In a correlated random-effects approach the researcher specifies the conditional distri-

bution of unobserved heterogeneity. Consider the case of time-invariant heterogeneity αi.

A possibility is to model the conditional distribution of αi given covariates and initial con-

ditions as a Gaussian distribution with linear mean and constant variance (Chamberlain,

1980). Other common specifications include letting αi be discretely distributed, possibly

with covariate-dependent type probabilities.

A different, quantile-based approach is introduced in Arellano and Bonhomme (2016).

They specify αi using a quantile-based model, as follows:

αi =
K∑
k=1

ck(Wi)ϕk (Yi1, Xi1) , (30)

where the Wi’s are independent standard uniform random variables, independent of all other

random variables. The ck(τ) functions are specified in a similar way as in (28) and (29). The

aim of this specification is to allow for flexible dependence between unobserved heterogeneity

and initial conditions. Misspecifying the form of this dependence is a well-known source of

bias in dynamic models (Heckman, 1981), so a flexible approach is appealing in this context.

Distributional specifications for multiple unobservables may be obtained through a triangular

approach or a copula modeling, as we outlined above. A triangular specification based on a

sequential ordering may be appealing in this context.

Lastly, a similar approach can be used to deal with the presence of time-varying unob-

servables. As an example, one may specify the feedback process of unobserved state variables

αit as

αit =
K∑
k=1

ck(Wit)ϕk (Yi,t−1, Xi,t−1, αi,t−1) , (31)
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where the Wit’s are independent standard uniform random variables. An analogous specifi-

cation may be used to model the conditional distributions of the initial α’s.

7 Algorithms for flexible estimation

The main challenge to estimate the nonlinear dynamic systems considered here is due to the

presence of latent variables. In this section we describe how recently developed econometric

methods may provide tractable estimators in those settings. We focus on correlated random-

effects methods, although fixed-effects methods could also be a possibility in models with

time-invariant unobserved heterogeneity.

The likelihood functions in Section 2 are mixtures of likelihoods, with respect to an

underlying time-invariant αi or a time-varying sequence (αi1, ..., αiT ). As a result, estima-

tion methods for mixture models are well-suited. A natural approach is the Expectation-

Maximization (EM) algorithm of Dempster, Laird and Rubin (1977). Related alternative

methods may be based on Markov Chain Monte Carlo (MCMC) techniques; see for example

Lancaster (2004) for a review of panel data applications of those techniques. EM and MCMC

methods both alternate between updates of two types of parameters: the ones that enter

the conditional distributions of outcome variables and covariates (such as the a’s in (28)),

and the ones that enter the distributions of latent variables (such as the c’s in (30)). The

E-step in EM requires computing integrals with respect to latent variables, a task which

may be challenging in models with time-varying unobserved states αit. MCMC methods

do not require computing such integrals, as they only require drawing from the posterior

distribution of latent variables, and may thus be easier to apply in those settings.

Recently, Arellano and Bonhomme (2016, AB hereafter) introduce an estimation method

tailored to the quantile-based specifications which we described in Section 6. Their approach

is based on a stochastic EM algorithm (Celeux and Diebolt, 1993), which shares a number of

features with EM and MCMC. The algorithm proceeds by iteratively repeating the following

two steps until convergence to a stationary regime, parameter estimates being computed as

means of a large number of realizations of the resulting chain.

In the first step, the latent variables αi are drawn from their posterior distribution, with

M draws per individual. Given some values of the parameters, coming from the previous

iteration of the algorithm, the joint complete data likelihood function implied by a model such

as (28)-(29)-(30) is easy to compute, so one can readily draw from the associated posterior
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distribution using a Metropolis Hastings sampler.

In the second step, parameter updates are computed given the latent draws. That is, in

the case of the quantile-based model (28)-(29)-(30), the a’s, b’s and c’s are estimated using

simple linear quantile regressions. As an example, the ak` = ak(τ `) in (28) for k = 1, ..., K

are estimated through a quantile regression of outcome variables Yit on functions of state

variables ϕk(Yi,t−1, Xit, Xi,t−1, α
(m)
i ), at each percentile τ `, where the α

(m)
i are the imputed

values of the unobserved component drawn from the posterior distribution in the first step.

The quantile regression objective is convex and efficient optimization routines are available

(e.g., Koenker and Bassett, 1978, Koenker, 2005), making this second step computationally

tractable too.

The second step easily accommodates the presence of specifications other than quantile-

based ones. As an example, one could model the outcome distribution in (28) through

a nonlinear conditional mean model instead. In such a case, the ak’s would be updated

through a nonlinear regression of outcomes on functions of state variables and imputed

values. Likewise, in models with binary or other discrete outcome variables, such as a durable

consumption decision or a participation margin in labor supply, parameters in the discrete

choice model may be updated through (series) logit or probit, for example. As another

example, when using a copula modeling for multivariate outcome variables or covariates, the

copula parameters may be updated via a maximum likelihood step.

AB provide details on the implementation of this stochastic EM algorithm. The method

can readily be generalized to allow for time-varying αit’s, as done in an application to earnings

and consumption dynamics in Arellano et al. (2016). A difference with the time-invariant

heterogeneity case is that one then needs to draw M sequences (α
(m)
i1 , ..., α

(m)
iT ) for each indi-

vidual. Efficient simulation methods such as particle filtering (e.g., Herbst and Schorfheide,

2015) may be used for this purpose.

Statistical properties. In parametric settings, the asymptotic properties of estimators

based on stochastic EM have been characterized in Nielsen (2000), who provides conditions

for root-N consistency and asymptotic normality, and gives the expression of asymptotic

variances. The algorithm outlined in this section differs from the standard stochastic EM

algorithm since it is not based on likelihood functions but on quantile-based estimating equa-

tions; see Elashoff and Ryan (2004) for properties of the EM algorithm based on estimating
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equations. AB adapts the asymptotic derivations in Nielsen (2000) to this setting.

Using quantile-based steps as opposed to likelihood steps for parameter updates in AB’s

algorithm is motivated by computational considerations, since doing so allows one to split

the parameter updates into τ `-specific updates, and since this exploits the convexity of the

objective function of quantile regression. As in related settings based on partial likelihood

functions (e.g., Arcidiacono and Jones, 2003), this sequential approach is in general less

efficient than full maximum likelihood. In practice, inference may be based on empirical

counterparts to the analytical variance-covariance matrix, or on re-sampling methods such

as the bootstrap or subsampling.

Given the goal of the approach described in this paper, which aims at achieving flexible

estimation of nonlinear reduced forms of economic models, it is conceptually appealing to

see the parametric specification as an approximation to a nonparametric joint distribution

which becomes more accurate in larger samples. This means that one should conduct the

asymptotic analysis in a setting where K (the number of functions of state variables) and L

(the number of knots in the spline model for quantile specifications) tend to infinity as the

number of individuals N increases. Some progress has recently been made in this direction.

AB provide conditions for consistency of their stochastic EM-based estimator in this joint

asymptotic. Belloni et al. (2016) develop inference methods for the whole quantile process

in series quantile regression models. Extending the latter results to provide joint inference

on all reduced-form parameters in a fully nonparametric setting in the presence of latent

variables is still an unsolved question.

8 Related approaches

In this last section we briefly review recent work in two directions which we have not yet

considered in this paper: dynamic discrete choice models, and models with interactions

between agents and multi-sided heterogeneity.

8.1 Discrete outcomes

The focus of this review is on models with continuous or mixed discrete/continuous outcomes,

such as consumption and extensive labor supply, for example. When all outcomes of interest

are discrete, related methods have been proposed in the literature on structural dynamic

discrete choice models. Classic examples are Rust (1987) and Keane and Wolpin (1997). See
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Aguirregabiria and Mira (2010) for a survey of those methods.

Discrete outcomes models with continuous latent variables are generally not point identi-

fied, however. Kasahara and Shimotsu (2009) and Browning and Carro (2014) provide condi-

tions for identification under the assumption that the latent variables are time-invariant and

have a finite (known) number of points of support. Establishing identification of reduced-

form distributions in the presence of latent variables may be useful as a step toward establish-

ing identification of the structural model. Partial identification results have been obtained

in simple discrete choice panel data models in Honoré and Tamer (2006). Recent work by

Connault (2016) considers discrete choice models with time-varying unobserved state vari-

ables. Studying identification further in those discrete settings seems an important research

avenue.

On the estimation side, alternatives to full-solution estimation of structural models have

been proposed in the literature (e.g., Hotz and Miller, 1988, Aguirregabiria and Mira, 2002,

Su and Judd, 2012). The approach advocated in this paper is closest to the first stage in the

two-stage estimator proposed by Arcidiacono and Miller (2011), where the conditional choice

probabilities and the probabilities of the unobserved discrete types are estimated jointly.

Arcidiacono and Miller then propose estimating the structural parameters in a second stage,

motivating this approach on computational grounds.

8.2 Beyond single agent models

The main focus of this review is on single agent models. Extending these models to allow

for interactions between agents (such as husband and wife, village members, or workers and

firms) is an active research area.

Bonhomme et al. (2016a) propose a model of wages and worker/firm sorting for matched

employer-employee panel data. They consider a setup with two-sided unobserved hetero-

geneity. In a similar spirit to the general approach advocated in this paper, they model the

joint distribution of wages and mobility decisions under certain dynamic assumptions which

they show to hold in a number of theoretical models of sorting such as wage posting models

or models with wage bargaining. The state variables of the economic model are the time-

invariant worker and firm latent types, as well as the wages, thus allowing for a relaxation of

network exogeneity assumptions commonly made in this literature. Similarly as in Section 2,

the models they consider imply Markovian conditional independence restrictions which are
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used to establish nonparametric identification under suitable rank conditions. The estimated

reduced-form distribution may then be used to perform variance decomposition exercises in

the spirit of Abowd, Kramarz and Margolis (1999), or more generally distributional decom-

position exercises quantifying the effects of worker heterogeneity, firm heterogeneity, and

allocation patterns of workers to firms, on the wage distribution.

In a setting with two-sided latent heterogeneity, a correlated random-effects approach

to estimation is challenging to implement, due to the complex structure of the likelihood

function in this case. Bonhomme et al. (2016a) propose to treat firm heterogeneity as fixed-

effects, while modeling worker heterogeneity using a correlated random-effects specification.

The main insight is that, conditional on the firm effects, the structure of the model is

analogous to a single agent model such as the ones we have focused on in the previous

sections. In addition, in order to reduce dimensionality and make the approach tractable

in short panels they rely on a discretization of firm-level heterogeneity. The statistical

properties of this approach are studied in Bonhomme et al. (2016b), in a setting where

population unobserved heterogeneity is continuously distributed and the discretization is

seen as an approximation.

More generally, there are many important dynamic economic models for which the single

agent focus of this paper is not appropriate. Examples can be found the literature on dynamic

games (e.g., Aguirregabiria and Mira, 2007, Pesendorfer and Schmidt-Dengler, 2008). Other

related examples may be found in the literature on dynamic models of economic networks

(e.g., Jackson, 2009). Generalizing the approach presented in this paper to such settings

seems a promising avenue.

9 Conclusion

Increased data availability provides opportunities to document novel nonlinear economic

relationships. Examples where nonlinearities have been shown or suggested to matter em-

pirically are the analysis of earnings, consumption and wealth (Arellano et al., 2016, Guvenen

et al., 2016), dynamic public finance models (Golosov and Tsyvinski, 2015), or models of

asset pricing (Constandinides and Gosh, 2016, Schmidt, 2015).

A large econometric literature has developed methods to achieve robustness to functional

forms, including semi-parametric and nonparametric methods, and bounds approaches. How-

ever, these developments have so far mostly been limited to cross-sectional settings. In con-
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trast, dynamic panel data models have typically been analyzed in tightly parametric settings,

most often linear ones. In this perspective, the aim of the recent work reviewed in this paper

is to develop such a robust approach for dynamic systems, in the presence of nonlinearities

and unobserved heterogeneity.

The tools we have reviewed concern both identification and estimation. Regarding the

former, economic assumptions on the relevant state variables and their evolution imply dy-

namic exclusion restrictions which may be used to establish identification, similarly as in

linear models. Regarding the latter, flexible estimation methods based on quantile specifi-

cations or other sieves make it possible to take rich nonlinear models to panel data. Impor-

tantly, these methods allow for the presence of time-invariant heterogeneity or time-varying

latent variables, which are often key state variables in the economic model. We have reviewed

recent advances based on simulation methods. More work is needed on their computational

and statistical properties.

Since the nonlinear methods do not rely on linear approximations, there is no mismatch

between the joint distribution under study and the dynamic implications of a nested struc-

tural model. Hence the methods reviewed here may be used in combination with structural

approaches, in particular in order to establish identification and improve estimation. In

addition, as the examples mentioned in this review demonstrate, policy-relevant average

derivative effects may be recovered without the need for additional functional form assump-

tions.

Among the many questions for future work, an important one concerns robustness. While

consistent with large classes of economic models, dynamic conditional independence assump-

tions are instrumental to establish identification. It would be interesting to assess the impact

of relaxing some of these assumptions, for example in the spirit of Chen et al. (2011). Lastly,

extending the methods reviewed here to models of economic networks or risk sharing, and

to identify the effects of macroeconomic risk, are also important tasks.
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