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Abstract

This paper studies the properties of generalised empirical likelihood (GEL)
methods for the estimation of and inference on partially identified parameters in
models specified by unconditional moment inequality constraints. The central re-
sult is, as in moment equality condition models, a large sample equivalence between
the scaled optimised GEL objective function and that for generalised method of mo-
ments (GMM) with weight matrix equal to the inverse of the efficient GMM metric
for moment equality restrictions. Consequently, the paper provides a generalisa-
tion of results in the extant literature for GMM for the non-diagonal GMM weight
matrix setting. The paper demonstrates that GMM in such circumstances delivers
a consistent estimator of the identified set and derives the corresponding rate of
convergence. Based on these results the consistency of and rate of convergence
for the GEL estimator of the identified set are obtained. A number of alternative
equivalent GEL criteria are also considered and discussed. The paper proposes sim-
ple conservative uniformly consistent confidence regions for the identified set and
the true parameter vector based on both GMM with a non-diagonal weight matrix
and GEL. A simulation study examines the efficacy of the non-diagonal GMM and
GEL procedures proposed in the paper compares them with the standard diagonal
GMM method.
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1 Introduction

The primary concern of this paper is an examination of the properties of generalised em-

pirical likelihood (GEL) methods for the estimation of and inference on partially iden-

tified parameters in models specified by unconditional moment inequality constraints.

The central result is, as in moment equality condition models, a large sample equivalence

between the scaled optimised GEL objective function and that for generalised method

of moments (GMM) with weight matrix equal to the inverse of the moment variance,

i.e., the efficient GMM metric for moment equality restrictions. Consequently, the paper

provides a generalisation of results in the extant literature for GMM from the diagonal

to the non-diagonal GMM weight matrix setting; see, inter alia, Chernozhukov et al.

(2007), henceforth CHT. The paper demonstrates that GMM in such circumstances de-

livers a consistent estimator of the identified set and derives the corresponding rate of

convergence. Based on these results the consistency of and rate of convergence for the

GEL estimator of the identified set are obtained. A number of alternative equivalent GEL

criteria are also considered and discussed. The paper proposes simple conservative uni-

formly consistent confidence regions for the identified set and the true parameter vector

based on GMM with a non-diagonal weight matrix and GEL. A simulation study corrob-

orates the main theoretical results of this paper and indicates that empirical likelihood

and exponential tilting confidence region estimators have favourable coverage proper-

ties relative to GMM and especially continuous updating which has very poor coverage

outside the identified set.

The econometric literature concerned with partially identified models has grown

rapidly in recent years, especially that for models defined by moment inequality restric-

tions. The impetus for this research originally arose from the recognition that unten-

able and thus undesirable assumptions may often be imposed in econometric research to

achieve point identification of model parameters thereby reducing the credibility of any

resultant inference. The analysis of the properties of extremum-type parameter estima-

tors in partially identified models specified by moment inequality restrictions has received

particular attention. CHT provides general conditions for the consistency of estimators

for the identified set and resampling methods to generate uniformly consistent confidence

regions for either the identified set or the true parameter vector. To date much of this

literature has concentrated on the GMM criterion and associated GMM estimators. CHT

section 4, pp.1261-1267, develops confidence region estimators for the identified set and

true vector of parameters based on GMM with a diagonal weight matrix whereas Rosen
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(2008) does so for the latter based on the GMM criterion with the equality moment

constraints efficient metric which avoids the necessity of CHT resampling techniques. An

important recent contribution, Chen et al. (2016), develops confidence regions for the

identified set based on inverting an optimal sample criterion where cut-off values are com-

puted directly from MCMC simulations of a quasi-posterior distribution of the criterion.

However, not unlike CHT for GMM, this method also requires a diagonal variance matrix

assumption; see Assumption 3.2 and Theorem 3.1 of Chen et al. (2016). Menzel (2014)

extends the CHT results for GMM to the case of many moment inequalities; cf. the many

moment equalities GMM results of Han and Phillips (2008). Moment inequality selec-

tion methods and corresponding methods of inference based on GMM-type estimators

are developed in Andrews and Guggenberger (2009), Andrews and Soares (2010) and An-

drews and Barwick (2012). Extensions of GMM to conditional moment inequality models

have also been considered; see, e.g., Andrews and Shi (2013, 2014), Armstrong (2014,

2015), Armstrong and Chan (2016) and Khan and Tamer (2009). Misspecified moment

inequalities are studied in Ponomareva and Tamer (2011) and Bugni et al. (2012).

The criterion function approach of CHT and others, although of general applicabil-

ity, can be computationally demanding. Another strand of research has focussed on

econometric models with compact convex identified sets enabling the identified set to be

characterised by its support function which thus provides a computationally tractable

representation. See, e.g., Beresteanu and Mollinari (2008), Beresteanu et al. (2011) and

Kaido and Santos (2014). Kaido (2016) presents a unification of the two approaches for

compact convex identified sets, illustrating the applicability of the results in a number

of examples and for models defined by a finite number of moment inequalities.

Despite the many substantial theoretical contributions to research on the estimation

of set-identified parameters relatively little is known about the properties of GEL-type es-

timators. Exceptions are Moon and Schorfheide (2009), which adopts an empirical likeli-

hood approach when parameters are point-identified by over-identifying moment equality

restrictions and also subject to moment inequality restrictions, and Canay (2010), which

obtains EL-based confidence regions for the true parameter vector when it is partially

identified by a set of unconditional moment inequalities. More generally, the asymptotic

properties of GEL methods of inference for the identified set and the true parameter

vector, the topic of this paper, remain to be developed.

The paper is organised as follows. Section 2 briefly reviews the set-up describing mod-

els specified by unconditional moment inequality constraints. Section 3 details GMM and

GEL criteria and associated constructs appropriate for estimation and inference in such
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models. The equivalence of definitions of the identified set based on population GMM

and GEL criteria is also discussed and established here. Consistent estimators for the

identified set based on GMM and GEL criteria are described in section 4 with, in par-

ticular, the asymptotic equivalence of various GEL criteria also shown. Conservative

confidence region estimators for the identified set and the true parameter vector based

on GMM with a non-diagonal weight matrix and GEL are proposed in section 5. Section

6 provides a simulation study for interval outcomes in a nonlinear regression model to ex-

amine the efficacy of GEL procedures proposed in the paper compared with the standard

diagonal GMM method. Section 7 summarises and concludes. The appendices contain

the technical assumptions of CHT, their verification for nondiagonal metric GMM and

GEL together with the proofs of results stated in the text.

Throughout the text zi, (i = 1, ..., n), denotes a random sample of size n on the

observation dz-dimensional vector z. Positive (semi-) definite is abbreviated as p.(s.)d.,

f.c.r. full column rank and f.o.c. first order condition. The interior of a set A is denoted

as int(A). Superscripted vectors denote the requisite element, e.g., aj is the jth element

of vector a; ‖x‖− = ‖(x)−‖ with (x)− = min{x, 0}. UWL denotes a uniform weak

law of large numbers such as Lemma 2.4 of Newey and McFadden (1994) and CLT

is the Lindeberg-Lévy central limit theorem. The symbols “⇒”, “
p→” and “

d→” denote

weak convergence, convergence in probability and convergence in distribution respectively

and “with probability (approaching) 1” written as “w.p.(a.)1”. The Hausdorff distance

between sets A and B is defined as dH(A,B) = max[supa∈A d(a,B), supb∈B d(b, A)] where

d(b, A) = infa∈A ‖b− a‖ and dH(A,B) =∞ if either A or B are empty.

2 Moment Inequality Restrictions

Let m(z, θ) denote a dm-vector of known functions of the data observation vector z

and the dθ-vector θ ∈ Θ of unknown parameters where Θ ⊂ Rdθ is the correspond-

ing parameter space. The moment indicator vector m(z, θ) will form the basis for

inference in the following discussion and analysis. Also let m(θ) = EP0 [m(z, θ)] and

Ω(θ) = EP0 [m(z, θ)m(z, θ)′], θ ∈ Θ, where EP0 [·] denotes expectation taken with respect

to the true population probability law (P0) of z.

Assumption A.1. (a) The parameter space Θ is a non-empty and compact subset

of Rdθ ; (b) m(z, θ) is continuous at each θ ∈ Θ w.p.1, EP0 [supθ∈Θ ‖m(z, θ)‖2] < C <∞
for suitably large C > 0; (c) Ω(θ) is finite and uniformly positive definite θ ∈ Θ; (d) the
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data zi, (i = 1, ..., n), are defined on a complete probability space (Ω,F , P ).

Remark 2.1. Assumption A.1 repeats aspects of Condition M.2(a), p.1265, of CHT.

It is assumed that the true value θ0 taken by θ satisfies the population unconditional

moment inequality condition under P0

EP0 [m(z, θ)] ≥ 0. (2.1)

Remark 2.2. Moment inequalities such as (2.1) arise in many settings, e.g., interval

outcomes in regression models of relevance for empirical models of auctions which forms

the basis for the experimental design of the simulation study of section 6. See, inter

alia, the CHT introduction which provides several more examples and the associated

discussion in Romano and Shaikh (2008) for other common examples.

In many situations the common assumption that θ0 uniquely satisfies the inequality

restrictions (2.1) is untenable. A more general and less stringent requirement is that

there exists a subset of Θ, here denoted by ΘP0 and referred to as the identified set, for

which these inequality constraints hold, i.e., the identified set ΘP0 consists of all those

elements θ ∈ Θ that satisfy the moment inequality restrictions (2.1)

ΘP0 = {θ ∈ Θ : EP0 [m(z, θ)] ≥ 0}. (2.2)

It is convenient for the following analysis to define a dm-vector of complementary slackness

parameters t(θ) by the identity

t(θ) = EP0 [m(z, θ)] (2.3)

with the consequent equivalent re-expression of the moment inequality constraints (2.1)

as the equality restrictions t(θ)−EP0 [m(z, θ)] = 0 together with the parametric inequality

restrictions t(θ) ≥ 0. Thus, the identified set ΘP0 may now be re-defined as

ΘP0 = {θ ∈ Θ : t(θ)− EP0 [m(z, θ)] = 0, t(θ) ≥ 0}. (2.4)

In the following the identified set ΘP0 is of inferential interest.

3 GMM and GEL

This section first discusses GMM for models specified by the moment inequality restric-

tions (2.1). A description of the application of GEL then follows; equivalent GEL variants
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and their properties are detailed in Appendix D. The section is concluded by an analysis

and comparison of the corresponding GMM and GEL definitions of the identified set.

Let mi(θ) = m(zi, θ), (i = 1, ..., n), m̂n(θ) =
∑n

i=1 mi(θ)/n and Ω̂n(θ) =∑n
i=1mi(θ)mi(θ)

′/n. Assumptions A.1(b) and (c) above ensure m̂n(θ)
p→ m(θ) and

Ω̂n(θ)
p→ Ω(θ) uniformly θ ∈ Θ by UWL.

3.1 GMM

Define the norm ‖x‖2
W = x′Wx where W is a p.s.d. matrix. A general formulation for

GMM appropriate for the moment inequality constraints (2.1) is based on the objective

function

Q̂W
n (θ) = inf

t≥0
(m̂n(θ)− t)′Wn(θ)(m̂n(θ)− t)

= inf
t≥0
‖m̂n(θ)− t‖2

Wn(θ) , (3.1)

where Wn(θ) is assumed to be uniformly p.s.d. θ ∈ Θ. The solution t̂n(θ) to (3.1) satisfies

t̂jn(θ) = 0 if m̂j
n(θ) < 0 and m̂j

n(θ) if m̂j
n(θ) ≥ 0, (j = 1, ..., dm). Cf. Rosen (2008); also

see CHT and Romano and Shaikh (2008).

Assumption A.2-GMM. (a) The GMM criterion function Q̂W
n (θ) is defined on a

neighbourhood Θ′ of Θ, and is measurable in θ ∈ Θ′; (b) there exists W (θ) such that

supθ∈Θ |Wn(θ)−W (θ)| = op(1) where W (θ) is continuous with finite elements and uni-

formly positive definite θ ∈ Θ.

Remark 3.1. Assumption A.2-GMM together with Assumption A.1 reproduces Con-

ditions M.2(a) and M.2(e), p.1265, of CHT with an important exception; cf. Assumptions

A4 and A5, p.110, of Rosen (2008). That is, CHT Assumption M.2(e), p.1265, which

imposes diagonality on the asymptotic GMM weight matrix W (θ), is relaxed here. Con-

sequently, the GMM criterion Q̂n(θ) in (3.1) may no longer be equivalently expressed

asymptotically as the CHT sample criterion
∥∥m̂n(θ)′Wn(θ)1/2

∥∥2

− unless W (θ) is diago-

nal. Assumption A.2-GMM(b) may be straightforwardly verified by application of UWL.

Remark 3.2. Of particular interest is the GMM objective function with the optimal

GMM metric in the unconditional moment equality context, i.e., Wn(θ) = Ω̂n(θ)−1; viz.

Q̂Ω−1

n (θ) = inf
t≥0

(m̂n(θ)− t)′Ω̂n(θ)−1(m̂n(θ)− t) (3.2)

= inf
t≥0
‖m̂n(θ)− t‖2

Ω̂n(θ)−1 .
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The population counterpart QW (θ) to the GMM criterion (3.1) is defined by

QW (θ) = inf
t≥0

(m(θ)− t)′W (θ)(m(θ)− t) (3.3)

= inf
t≥0
‖m(θ)− t‖2

W (θ) .

3.2 GEL

It is well know that GEL is first order asymptotically equivalent to optimal GMM in the

standard moment equality constraint setting. As is also widely appreciated, GEL includes

as special cases empirical likelihood (EL) [Qin and Lawless (1994), Imbens (1997)], expo-

nential tilting (ET) [Kitamura and Stutzer (1997), Imbens, Spady and Johnson (1998)],

continuous updating estimation (CUE) [Hansen et al. (1996)] and estimators based on

the the Cressie-Read power divergence family [Cressie and Read (1984)]. See inter alia

Newey and Smith (2004) and Smith (1997, 2011). Canay (2010) develops an EL-based

confidence region for the true parameter vector θ0, but does not study the large sample

properties of the EL estimator of the identified set.

To describe GEL let ρ(v) be a function of a scalar v that is concave on its domain

V , an open interval containing zero. For expositional convenience but without loss of

generality ρ(0) is set equal to 0 below. The standard GEL criterion is then defined as

P̂ ρ
n(θ, λ) =

n∑
i=1

ρ(λ′mi(θ))/n, (3.4)

in which each element of the auxiliary parameter vector λ ∈ Rdm is associated with a

corresponding element of the moment indicator vector mi(θ), (i = 1, ..., n); cf. Newey

and Smith (2004) and Smith (1997, 2011).

Let Λ̂+
n (θ) = Λ̂n(θ) ∩ {λ ≥ 0} where Λ̂n(θ) = {λ : λ′mi(θ) ∈ V , (i = 1, ..., n)}

constrains the domain of ρ(·) to the concavity region V identically to the standard moment

equality restrictions case; see Newey and Smith (2004). Optimization of P̂ ρ
n(θ, λ) (3.4)

with respect to λ is taken over Λ̂+
n (θ), where the non-negativity restriction λ ≥ 0 reflects

the moment inequality constraints (2.1). The profile GEL criterion function P̂ ρ
n(θ) is

then defined by

P̂ ρ
n(θ) = sup

λ∈Λ̂+n (θ)

P̂ ρ
n(θ, λ). (3.5)

Let ρ1(·) and ρ2(·) denote the first and second derivatives of ρ(·) respectively. The

next assumption provides the requisite conditions on the profile GEL criterion P̂ ρ
n(θ)
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(3.5) and the function ρ(·).

Assumption A.2-GEL. (a) P̂ ρ
n(θ) is defined on a neighbourhood Θ′ of Θ and is

measurable in θ ∈ Θ′; (b) ρ(·) is strictly concave and twice continuously differentiable

on an open interval V that includes 0 and ρ1(v) < 0 for all v ∈ V.

Remark 3.3. Cf. Assumption A.2-GMM. Assumption A.2-GEL(b) is satisfied

by the Cressie-Read (1984) family of divergence measures. In the following, without

loss of generality, the first two derivatives of ρ(·) at zero are set to minus unity, i.e.,

ρ1(0) = ρ2(0) = −1.

For any θ ∈ Θ, define λ̂n(θ) = arg maxλ∈Λ̂+n (θ) P̂
ρ
n(θ, λ) as the solution to the f.o.c.

with respect to λ for given θ, i.e.,

n∑
i=1

ρ1(λ̂n(θ)′mi(θ))mi(θ)/n ≤ 0, λ̂n(θ) ≥ 0. (3.6)

In particular
∑n

i=1 ρ1(λ̂n(θ)′mi(θ))m
j
i (θ)/n = 0 and λ̂jn(θ) > 0 or

∑n
i=1 ρ1(λ̂n(θ)′mi(θ))m

j
i (θ)/n <

0 and λ̂jn(θ) = 0, (j = 1, ..., dm), i.e., λ̂n(θ)′
∑n

i=1 ρ1(λ̂n(θ)′mi(θ))mi(θ)/n = 0.

The GEL empirical or implied probabilities are then defined correspondingly by

π̂ρi (θ, λ) =
ρ1(λ′mi(θ))∑n
k=1 ρ1(λ′mk(θ))

, (i = 1, ..., n); (3.7)

cf. Back and Brown (1993), Newey and Smith (2004) and Brown and Newey (1992, 2002).

Remark 3.4. The GEL implied probabilities π̂ρi (θ) = π̂ρi (θ, λ̂n(θ)), (i = 1, ..., n),

(3.7), are non-negative by Assumption A.2-GEL(b), sum to unity and satisfy the sample

moment inequality condition
∑n

i=1 π̂
ρ
i (θ)mi(θ) ≥ 0 (3.6) defining the f.o.c. for λ̂n(θ) for

given θ. Cf. Assumption A.2-GEL(b).

Remark 3.5. The above optimisation problem may be cast alternatively in terms

of the Lagrangean P̃ ρ
n(θ, λ, τ) =

∑n
i=1 ρ(λ′mi(θ))/n + τ ′λ where τ is the dm-vector of

Lagrange multipliers associated with the inequality constraint λ ≥ 0. The Lagrange mul-

tiplier estimator satisfies τ̂n(θ) ≥ 0 with λ̂n(θ)′τ̂n(θ) = 0 and, in particular, λ̂jn(θ) = 0 and

τ̂ jn(θ) > 0 or λ̂jn(θ) > 0 and τ̂ jn(θ) = 0, (j = 1, ..., dm). The auxiliary parameter estimator

λ̂n(θ) is the solution to the f.o.c. with respect to λ, i.e.,
∑n

i=1 ρ1(λ̂n(θ)′mi(θ))mi(θ)/n+
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τ̂n(θ) = 0. Thus τ̂n(θ) satisfies τ̂n(θ) = −
∑n

i=1 ρ1(λ̂n(θ)′mi(θ))mi(θ)/n; cf. (3.6).

Remark 3.6. Appendix E gives alternative equivalent forms of GEL criteria; viz.

P̃ ρ,a
n (θ, λ, τ) =

∑n
i=1 ρ(λ′(mi(θ)−τ))/n (E.1), P̃ ρ,b

n (θ, λ, τ) =
∑n

i=1[ρ(λ′mi(θ))−ρ(λ′τ)]/n

(E.3) and P̃ ρ
n(θ, λ, τ) =

∑n
i=1 ρ(λ′mi(θ))/n + λ′τ (E.6), cf. Remark 3.5. Lemmas E.1-

E.3 in Appendix E.1 provide detailed statements and, in particular, demonstrate that

both the solutions to and the optimised values of the corresponding GEL saddle point

problems (3.4), (E.6) and (E.1), (E.3) are identical, i.e., if (θ̃, λ̃, τ̃), where τ̃ ∈ int(T ), is

a saddlepoint of P̃ ρ
n(θ, λ, τ) or P̃ ρ,k

n (θ, λ, τ), (k = a, b), then (θ̃, λ̃) is also a saddlepoint of

P̂ ρ
n(θ, λ) and, if (θ̂, λ̂) is a saddlepoint of P̂ ρ

n(θ, λ) and τ̂ ∈ int(T ) for suitable definitions of

the slackness parameter τ̂ , then (θ̂, λ̂, τ̂) is also saddlepoint of P̃ ρ
n(θ, λ, τ) or P̃ ρ,k

n (θ, λ, τ),

(k = a, b). Cf. Lemma A.1, p.150, of Moon and Schorfheide (2009).

3.3 Identified Set

The identified set ΘP0 (2.2) is clearly identical to the GMM population counterpart

ΘW
P0

= {θ ∈ Θ : θ = arg min
θ∈Θ

QW (θ)} (3.8)

where QW (θ) is defined in (3.3).

Let P̂ ρ(θ) denote the population counterpart to the profile GEL criterion P̂ ρ
n(θ) (3.5),

i.e., P̂ ρ(θ) = supλ≥0 EP0 [ρ(λ′m(z, θ)) − ρ(0)]. The GEL population counterpart Θ̂ρ
P0

to

the identified set ΘP0 (2.2) is then defined as

Θ̂ρ
P0

= {θ ∈ Θ : θ = arg min
θ∈Θ

P̂ ρ(θ)} (3.9)

which similarly to Canay (2010) for EL may be shown to be identical to the identified

set ΘP0 (2.2).

Remark 3.7. Alternative but equivalent population counterparts Θ̃ρ
P0

(E.8) and

Θ̃ρ,k
P0

, (k = a, b), (E.9) may be defined corresponding to the GEL criteria P̃ ρ
n(θ, λ, τ) (E.6)

and P̃ ρ,k
n (θ, λ, τ), (k = a, b), (E.1) and (E.3). See Appendix E.3 for a detailed description.

Lemma D.1 in Appendix D formally demonstrates the equivalence of Θ̂ρ
P0

(3.9) with

the identified set ΘP0 (2.2). Lemmas E.4 and E.5 in Appendix E do likewise for Θ̃ρ
P0

(E.8) and Θ̃ρ,k
P0

(E.9), (k = a, b), with Θ̂ρ
P0

(3.9). Theorem 3.1 summarises these results.
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Theorem 3.1. Suppose that Assumptions A.1 and A.2-GEL are satisfied. Then

the GEL population counterparts Θ̂ρ
P0

(3.9), Θ̃ρ
P0

(E.8) and Θ̃ρ,k
P0

(E.9), (k = a, b), to the

identified set ΘP0 (2.2) are identical to ΘP0.

4 Set Estimation

Let vn(θ) = n1/2(m̂n(θ) − EP0 [m(z, θ)]), θ ∈ Θ, Ω(θa, θb)= EP0 [vn(θa)vn(θb)
′] and Ω(θ) =

Ω(θ, θ) where θa, θb ∈ Θ. The following assumptions correspond identically to CHT Con-

ditions M.2(c), M.2(d) and M.2(f), pp.1265-1266, respectively.

Assumption A.3. The process vn(·) satisfies a P -Donsker property. In particular,

vn(·) ⇒ v(·) where v(·) is a zero-mean Gaussian process on Θ′ with covariance function

EP0 [v(θa)v(θb)
′] = Ω(θa, θb).

Assumption A.4. There exist positive constants C > 0 and δ > 0 such that

‖EP0 [m(z, θ)]‖− ≥ C · (d(θ,ΘP0) ∧ δ) for all θ ∈ Θ with continuous Jacobian M(θ) =

∂m(θ)/∂θ′ for each θ ∈ Θ′.

Assumption A.5. There exist positive constants C > 0, M > 0 and δ > 0 such that,

for all θ ∈ Θ−εP0 , min1≤j≤dm ‖EP0 [mj(z, θ)]‖− ≥ C · (ε∧ δ) and dH(Θ−εP0 ,ΘP0) ≤Mε for all

ε ∈ [0, δ] where Θ−εP0 = {θ ∈ ΘP0 : d(θ,Θ\ΘP0) ≥ ε}.

Proofs for the following results are provided in Appendices B and C respectively for

GMM and GEL.

4.1 GMM

Let

Θ̂W
n (c) = {θ ∈ Θ : nQ̂W

n (θ) ≤ c}. (4.1)

Cf. CHT, eqs. (3.1) and (3.2), p.1253. The GMM estimator of the identified set ΘP0

(2.2) is then defined as the set estimator Θ̂W
n (ĉW ) (4.1) for some possibly data dependent

level ĉW .

Appendix B establishes the validity for GMM of CHT Conditions C.1, p.1252, C.2,

p.1253, and C.3, p.1255, under Assumptions A.1, A.2-GMM and A.3-A.5. These condi-

tions are therefore sufficient for the statement of the following theorem on the consistency
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and rate of convergence of the GMM set estimator Θ̂n(ĉ) for the identified set ΘP0 given

rate restrictions on ĉ as provided in CHT Theorem 3.2, p.1255.

Theorem 4.1. Let ĉW ≥ qn = infθ∈Θ nQ̂n(θ) w.p.a.1 and ĉW = Op(1). Then, under

Assumptions A.1, A.2-GMM and A.3-A.5, (a) Θ̂W
n (ĉW ) is a consistent estimator of the

identified set ΘP0, i.e., dH(Θ̂W
n (ĉW ),ΘP0) = op(1); (b) dH(Θ̂W

n (ĉW ),ΘP0) = Op(n
−1/2).

Remark 4.1. Theorem 4.1 is established by verifying the conditions required for

CHT Theorem 3.1, p.1254. Unlike CHT Condition M.2(e), p.1265, and the consequent

Theorem 4.2, p.1266, Theorem 4.1 does not require the diagonality of the population

GMM weight matrix W (θ), θ ∈ Θ, although similarly mild restrictions on the choice

of the value ĉW to those of CHT are imposed. CHT Theorem 4.2, p.1266, also obtains

a limiting representation for the statistic supθ∈ΘP0
nQ̂W

n (θ) when the population GMM

weight matrix W (θ), θ ∈ Θ, is diagonal. To the best of our knowledge there are as yet

no results for the non-diagonal case. Section 5.1 proposes conservative bounds appropri-

ate for GMM criteria with a non-diagonal population weight matrix W (θ), θ ∈ Θ, and,

likewise, GEL criteria.

Remark 4.2. Alternatively, cf. CHT Theorem 3.1, p.1254, a similar result holds

if ĉW ≥ supθ∈ΘP0
nQ̂W

n (θ) w.p.a.1 and ĉW/n = op(1) with Theorem 4.1(b) restated

as dH(Θ̂W
n (ĉW ),ΘP0) = Op((1 ∨ ĉW )/n)1/2; cf. Proposition 2, p.110, of Rosen (2008)

which sets ĉW → ∞ and ĉW/n = o(1). Since, in general, supθ∈ΘP0
nQ̂W

n (θ) is unknown,

CHT, p.1254, suggests the choice ĉW = o(log(n)) which yields a rate of convergence of

(log(n)/n)1/2.

4.2 GEL

Let

Θ̂ρ
n(ĉρ) = {θ ∈ Θ : nP̂ ρ

n(θ) ≤ ĉρ} (4.2)

where the profile GEL criterion P̂ ρ
n(θ) is defined in (3.5). The GEL estimator of ΘP0

(4.2) based on (3.4) is the solution to a saddle point problem and is described by the set

estimator Θ̂ρ
n(ĉρ) for some possibly data dependent ĉρ.

Remark 4.3. Write P̃ ρ
n(θ) = infτ∈T supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τ) and P̃ ρ,k

n (θ) = infτ∈T supλ∈Λ̂kn(θ,τ) P̃
ρ,k
n (θ, λ, τ),

(k = a, b), see Ramrk 3.6, and define

Θ̃ρ
n(ĉρ) = {θ ∈ Θ : nP̃ ρ

n(θ) ≤ ĉρ} (4.3)

[10]



and

Θ̃ρ,k
n (ĉρ) = {θ ∈ Θ : nP̃ ρ,k

n (θ) ≤ ĉρ}, (k = a, b). (4.4)

Consequently, the set estimators Θ̂ρ
n(ĉρ) (4.2), Θ̂ρ

n(ĉρ) (4.3) and Θ̂ρ,k
n (ĉρ), (k = a, b), (4.4)

based on the respective GEL criteria (3.4), (E.6), (E.1) and (E.3) evaluated using the

same critical value ĉρ are identical given their equivalence to P̃ ρ
n(θ, λ, τ) established in

Appendix E.1.

Appendix C establishes the corresponding validity of Conditions C.1, p.1252, C.2,

p.1253, and C.3, p.1255, of CHT under Assumptions A.1, A.2-GEL and A.3-A.5. Hence,

a similar result to Theorem 4.1 for GMM may be stated on the consistency and rate of

convergence of the GEL set estimators Θ̂ρ
n(ĉρ) (4.2), Θ̂ρ

n(ĉρ) (4.3) and Θ̂ρ,k
n (ĉρ), (k = a, b),

(4.4) for the identified set ΘP0 with some possibly data-dependent ĉρ.

Theorem 4.2. Let ĉρ ≥ qρn = infθ∈Θ nP̂
ρ
n(θ), infθ∈Θ nP̃

ρ,k
n (θ), (k = a, b), or infθ∈Θ nP̃

ρ
n(θ)

w.p.a.1 and ĉρ = Op(1). Then, under Assumptions A.1, A.2—GEL and A.3-A.5, (a)

Θ̂ρ
n(ĉρ), Θ̃ρ

n(ĉρ) and Θ̃ρ,k
n (ĉρ), (k = a, b), are consistent estimators of the identified set

ΘP0, i.e., dH(Θ̂ρ
n(ĉρ),ΘP0), dH(Θ̃ρ

n(ĉρ),ΘP0), dH(Θ̃ρ,k
n (ĉρ),ΘP0), (k = a, b), are op(1); (b)

dH(Θ̂ρ
n(ĉρ),ΘP0), dH(Θ̃ρ

n(ĉρ),ΘP0), dH(Θ̃ρ,k
n (ĉρ),ΘP0), (k = a, b), are Op(n

−1/2).

Remark 4.4. Theorem 4.2 is proved for the alternative GEL criterion P̃ ρ
n(θ, λ, τ)

(E.6) but also applies to P̂ ρ
n(θ, λ) (3.4) and P̃ ρ,k

n (θ, λ, τ), (k = a, b), (E.1), (E.3), given

their equivalence to P̃ ρ
n(θ, λ, τ) established in Appendix E.1. Proofs analogous to those

of Newey and Smith (2004) are developed to show these results. In particular, the GEL

criterion function is shown to be first-order equivalent to the optimal GMM criterion

(3.2) in the unconditional moment equality context and then Theorem 4.1 with popula-

tion GMM weight matrix Ω(θ)−1, θ ∈ Θ, is invoked.

Remark 4.5. Similarly to Remark 4.2 above, if ĉρ ≥ supθ∈ΘP0
nP̂ ρ

n(θ), ≥ supθ∈ΘP0
nP̃ ρ,k

n (θ),(k =

a, b), or≥ supθ∈ΘP0
nP̃ ρ

n(θ) w.p.a.1 and ĉρ/n = op(1), then dH(Θ̂ρ
n(ĉρ),ΘP0), dH(Θ̃ρ,k

n (ĉρ),ΘP0),

(k = a, b), and dH(Θ̃ρ
n(ĉρ),ΘP0) are Op((1 ∨ ĉρ)/n)1/2.

5 Confidence Region Estimation

Confidence regions for the identified set ΘP0 and the true parameter value θ0 are of par-

ticular interest. Section 5.1 constructs a conservative confidence region for the identified
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set ΘP0 . Section 5.2 develops conservative GEL-based confidence regions for the true

parameter value θ0 similar to those of Rosen (2008, Section 4, pp.111-113).

5.1 Conservative Confidence Regions for ΘP0

A critical matter is a suitable choice for the possibly data dependent ĉW or ĉρ respec-

tively satisfying the hypotheses of Theorems 4.1 and 4.2 thereby ensuring that the GMM

estimator Θ̂W
n (ĉW ) = {θ ∈ Θ : nQ̂W

n (θ) ≤ ĉW}, cf. (4.1), or GEL estimators Θ̂ρ
n(ĉρ) (4.2),

Θ̃ρ
n(ĉρ) (4.3) and Θ̃ρ,k

n (ĉρ) (4.4), (k = a, b), of the identified set ΘP0 possesses a confidence

region property; see CHT section 3.3, pp.1256-1257. CHT section 4.2, pp.1265-1267, ad-

dresses this issue for moment inequalities when the GMM asymptotic weighting matrix

W (θ) is diagonal; see CHT Condition M.2(e), p.1265.

Suppose b moment inequalities bind, i.e., mj(θ) = 0, (j = 1, ..., b), and the remain-

der do not, i.e., mj(θ) > 0, (j = b + 1, ..., dm), and c = dm − b; note that b and

thus c depend on θ. In principle, the critical value ĉW describing the GMM confidence

region estimator Θ̂W
n (ĉW ) = {θ ∈ Θ : nQ̂W

n (θ) ≤ ĉW} would be obtained from con-

sideration of the distribution of the limit quantity CW = supθ∈ΘP0
CW (θ) for the opti-

mised GMM criterion supθ∈ΘP0
nQ̂W

n (θ), where CW (θ) = (v(θ)− s(θ))′W (θ)(v(θ)− s(θ)),
s(θ) = arg minsb∈Rb+,sc∈Rc(v(θ)− s)′W (θ)(v(θ)− s), s = (s′b, s

′
c)
′ with sb those b elements

of s corresponding to the b binding moment inequalities and sc the remainder. See Lem-

mas A.2 and A.3 in Appendix A together with the Proof of CHT Condition C.1(d) in

Appendix B. Let ĉW (1−α) denote a consistent estimator of the 1−α quantile cW (1−α)

of the limit quantity CW . Then Θ̂n(ĉW (1−α)) (4.2) defines asymptotically an (1−α) level

confidence region for ΘP0 as limn→∞P{ΘP0 ⊆ Θ̂n(ĉW (1−α))} = 1−α and Θ̂n(ĉW (1−α))

is a consistent estimator of ΘP0 in Hausdorff distance at rate n−1/2; see Theorem 4.1 and

CHT, p.1266. Similar results may be stated for the GEL estimators Θ̂ρ
n(ĉρ(1−α)) (4.2),

Θ̂ρ
n(ĉρ(1 − α)) (4.3) and Θ̂ρ,k

n (ĉρ(1 − α)) (4.4), (k = a, b), given the limiting relationship

of the GEL criteria to the GMM-CUE criterion nQ̂W
n (θ) when Wn(θ) = Ω̂n(θ)−1; see

Theorem 4.2 and Appendix C.

Remark 5.1. To the best of our knowledge, no formal results yet exist establishing

the asymptotic validity of sub-sampling methods for approximating the distribution of

the limit GMM quantity CW with a non-diagonal GMM weight matrix W (θ), in partic-

ular, Ω(θ)−1, required for simulating the GEL confidence region estimator critical value

ĉρ. Cf. CHT section 3.4, pp.1257-1258.

[12]



To deal with the difficulty outlined in Remark 5.1, a simple valid but conservative

confidence region estimator for the identified set ΘP0 is now described. The difficulty is

easily circumvented by replacing the optimal GMM slackness parameter estimator t̂n(θ)

by [m̂n(θ)]−, i.e., the estimator that solves a GMM criterion with diagonal weight-matrix

as metric, thereby bounding the GMM criterion nQ̂W
n (θ) (3.1) above; cf. CHT Condition

M.2(e), p.1265. Let

Q̂
W

n
(θ) = [m̂n(θ)]′−Wn(θ)[m̂n(θ)]−. (5.1)

Then, by definition,

Q̂W
n (θ) ≤ Q̂

W

n
(θ)

for all n and θ ∈ Θ.

Remark 5.2. The population counterpart QW (θ) to the bounding GMM crite-

rion Q̂
W

n
(θ) (5.1) is defined by QW (θ) = [m(θ)]′−W (θ)[m(θ)]− =

∥∥[m(θ)]′−W (θ)1/2
∥∥2

;

cf. QW (θ) (3.3).

The Proofs of CHT Conditions C.4, p.1256, and C.5, p.1257, in Appendix B establish

the limiting behaviour of the scaled bounding GMM criterion nQ̂
W

n
(θ) (5.1); cf. CHT

Proof of Theorem 4.2 Steps 4 and 5, pp.1279-1280. The Proof of CHT Condition C.4 in

Appendix B, in particular, see (B.2) and (B.3) of Appendix B, establishes that the limit

CW of CWn = supθ∈ΘP0
nQ̂

W

n
(θ) is described by

CW = sup
θ∈ΘP0

||[v(θ) + ξ(θ)]−||2W (θ)

where ξj(θ) = 0 if mj(θ) = 0, (j = 1, ..., b), and ξj(θ) =∞ if mj(θ) > 0, (j = b+1, ..., dm),

for θ ∈ ΘP0 .

Correspondingly the 1−α quantile cW (1−α) of the limit CW of the scaled bounding

GMM criterion nQ̂
W

n
(θ) (5.1) satisfies

P{CW ≤ cW (1− α)} = 1− α,

i.e., limn→∞P{supθ∈ΘP0
nQW

n
(θ) ≤ cW (1 − α)} = 1 − α. It is then immediate that

limn→∞P{supθ∈ΘP0
nQ̂W

n (θ) ≤ cW (1−α)} ≥ limn→∞P{supθ∈ΘP0
nQ̂

W

n
(θ) ≤ cW (1−α)}.

Hence the asymptotic level of the confidence region Θ̂W
n (cW (1 − α)) (4.1) is bounded

below by 1− α, i.e.,

lim
n→∞

P{ΘP0 ⊆ Θ̂W
n (cW (1− α))} ≥ 1− α. (5.2)
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Remark 5.3. To implement the confidence region estimator Θ̂W
n (cW (1 − α)) (4.1)

requires a consistent estimate of the quantile cW (1 − α) of the limit CW of CWn =

supθ∈ΘP0
nQ̂

W

n
(θ). A simulation procedure similar to that outlined in CHT Remarks

4.2, pp.1263-1264, and 4.5, p.1267, suffices. In particular, let z∗i , (i = 1, ..., n), denote n

i.i.d. draws from the standard normal N(0, 1) distribution. Thus, the process v∗n(θ) =

n−1/2
∑n

i=1mi(θ)z
∗
i is zero-mean Gaussian with covariance function

∑n
i=1mi(θa)mi(θb)

′/n.

Define ξ̂jn(θ) = 0 if m̂j
n(θ) ≤ cj((log n)/n)1/2 and ∞ if m̂j

n(θ) > cj((log n)/n)1/2 for some

positive constants cj > 0, (j = 1, ..., dm). Also let Θ̂n denote a consistent estimator of

ΘP0 ; see section 4. Quantiles of the limit CW can then be estimated by simulation from

the distribution of Ĉ
W∗
n = supθ∈Θ̂n

Q̂
W∗
n

(θ) where Q̂
W∗
n

(θ) = ||[v∗n(θ) + ξ̂n(θ)]−||Wn(θ).

5.2 Confidence Regions for θ0

This section is concerned with GMM and GEL estimation of confidence regions for

the true parameter value θ0. Of central interest here is the optimal GMM criterion

in the unconditional moment equality context, i.e., Q̂Ω−1
n (θ) (3.2) when the GMM metric

Wn(θ) = Ω̂n(θ)−1. CHT section 5, pp.1267-1270, analyses the issue with an asymptoti-

cally diagonal GMM weight matrix whereas Rosen (2008) deals with the optimal GMM

criterion.To ease the notational burden the optimal GMM metric Ω−1 is omitted in the

following discussion.

Let b(θ) denote the number of binding moments for θ ∈ ΘP0 . Define c(θ) = dm− b(θ),
θ ∈ ΘP0 . Without loss of generality also let mj(θ) = 0, (j = 1, ..., b(θ)), and mj(θ) > 0,

(j = b(θ) + 1, ..., dm), θ ∈ ΘP0 .

By Lemma A.3 in Appendix A

nQ̂n(θ) = inf
sb∈Rb+,sc∈Rc

(v(θ)− s)′Ω(θ)−1(v(θ)− s) + op(1)

= (v(θ)− s(θ))′Ω(θ)−1(v(θ)− s(θ)) + op(1)

uniformly θ ∈ ΘP0 . Therefore, cf. Rosen (2008, Proposition 3, p.110), uniformly θ ∈ ΘP0 ,

lim
n→∞

P{nQ̂n(θ) > c} =

b(θ)∑
j=1

w(b(θ), b(θ)− j),Ω(θ))P{χ2
j > c}, (5.3)

a weighted chi-bar square distribution, where χ2
j , (j = 1, ..., b(θ)), denote independent chi-

square random variates with j degrees of freedom respectively. The weights w(b(θ), b(θ)−
j),Ω(θ)), (j = 1, ..., b(θ)), in (5.3) are defined in Kudo (1963) and Wolak (1987) and

correspond to the probability that exactly j of the b(θ) binding inequality constraints
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bind, i.e., P{s(θ) has j zero components}, (j = 1, ..., b(θ)); e.g., b(θ)Cj/2
b(θ) if Ω(θ) is

diagonal. See the discussion in Rosen (2008, p.111).

Clearly the GMM statistic (3.2) nQ̂n(θ) (3.2) is asymptotically non-pivotal. As noted

in Rosen (2008), if both b(θ) and Ω(θ) were known, the limiting distribution (5.3) could

easily be simulated with a valid confidence region for the true value θ0 obtained by

inversion of the non-rejection region {nQ̂n(θ) ≤ c} with c determined to deliver the

desired confidence level from (5.3). The limiting distribution (5.3), however, is discon-

tinuous in b(θ) rendering an estimator for this limiting distribution based on simulation

after substitution of consistent estimators b̂n(θ) and Ω̂n(θ) for bn(θ) and Ω(θ) respectively

inconsistent. Consequently, Rosen (2008, p.111) suggests using a least favourable asymp-

totic distribution approach based on an estimated upper bound for b(θ). In particular,

define b̂n(θ) =
∑dm

j=1 1[m̂j
n(θ) < C((log n)/n)1/2] for some constant C > 0. Then, since

limn→∞P{b̂n(θ) = b(θ)} = 1, uniformly θ ∈ ΘP0 , see CHT Remark 4.2, p.1267, Rosen

(2008) proposes the upper bound estimator b̂sup
n = supθ∈Θ̂n(ĉ) b̂n(θ) where Θ̂n(ĉ) is the

consistent GMM identified set estimator (4.1) with level ĉ satisfying Theorem 4.1. Let

bsup = supθ∈ΘP0
b(θ). Then

sup
θ∈ΘP0

lim
n→∞

P{nQ̂n(θ) > c} ≤ 1

2
P{χ2

bsup > c}+
1

2
P{χ2

bsup−1 > c};

see Rosen (2008, Corollary 1, p.113). Therefore, setting c such that

α =
1

2
P{χ2

bsup > c}+
1

2
P{χ2

bsup−1 > c},

a conservative 1− α level confidence region for θ0 is given by

inf
θ∈ΘP0

lim
n→∞

P{nQ̂n(θ) ≤ c} = 1− sup
θ∈ΘP0

lim
n→∞

P{nQ̂n(θ) > c}

≥ 1− α.

See the associated discussion in Rosen (2008, section 4, pp.111-113).

Remark 5.4. The various scaled optimised GEL criteria 2nP̂ ρ
n(θ) (3.4), 2nP̃ ρ

n(θ, λ̃n(θ), τ̃n(θ))

(E.6) and 2nP̃ ρ,k
n (θ, λ̃n(θ), τ̃n(θ)), (k = a, b), (E.1), (E.3) are asymptotically equivalent

to the GMM criterion nQ̂n(θ) (3.2), uniformly θ ∈ ΘP0 ; see Lemma C.4 in Appendix C.

Therefore, valid conservative GEL confidence regions for θ0 asymptotically equivalent to

that defined in (5.4) are given by substitution of these GEL criteria for nQ̂n(θ) in (5.4)

based on the respective consistent GEL identified set estimators Θ̂ρ
n(ĉρ) (4.2), Θ̂ρ

n(ĉρ)

(4.3) or Θ̂ρ,k
n (ĉρ), (k = a, b), (4.4), in place of the GMM identified set estimator Θ̂n(ĉ)

(4.1).
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6 Simulation Evidence

This section reports the results from a simulation study to assess the performance of

some of the confidence region estimators for the identified set ΘP0 based on the GMM

and GEL statistics developed in Section 5.1 for the identified set in a nonlinear interval

conditional mean regression model.

6.1 Experimental Design

The nonlinear conditional mean regression for the latent scalar variable y given the scalar

covariate x is described by

y = xθ0 + u

where u|x ∼ N(0, 1), x is uniformly distributed on the unit interval [0, 1] and θ0 = 1 is

the true value of the scalar parameter θ.

The regressand y is only partially observed according to the interval observation rule

y1 ≤ y ≤ y2

with y1 = y − ω1x
2 and y2 = y + ω2x observed where ω1, ω2 ≥ 0. Hence

EP0 [y1|x] ≤ xθ0 ≤ EP0 [y2|x] a.s. x.

and

EP0 [y1x] ≤ EP0 [xθ0+1] ≤ EP0 [y2x]

Defining the moment indicator vector m(z, θ) =
(
−(y1 − xθ)x, (y2 − xθ)x

)′
,

EP0 [m(z, θ)] =

(
−(E[x]− ω1E[x3]− E[xθ+1]
E[x] + ω2E[x2]− E[xθ+1]

)
=

(
−1

2
+ ω1

4
+ 1

θ+2
1
2

+ ω2
3
− 1

θ+2

)
.

Therefore, with the moment inequaility contraint EP0 [m(z, θ)] ≥ 0, the identified set ΘP0

is given by the interval

ΘP0 =

[
− 4ω2

3 + 2ω2

,
ω1

1− ω1/2

]
.

To obtain the moment matrix Ω(θ0) = EP0 [m(z, θ0)m(z, θ0)′], note that m1(z, θ0) =

−ux+ ω1x
3 and m2(z, θ0) = ux+ ω2x

2. Hence

Ω(θ0) =

(
1/3 + ω2

1/7 ω1ω2/6− 1/3
ω1ω2/6− 1/3 1/3 + ω2

2/5

)
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which is diagonal when ω1ω2 = 2. The experiments consider the diagonal Ω(θ0) case

throughout with values for ω1 and ω2

ω1 =
2

3
, ω2 = 3.

Hence, the resultant identified set

ΘP0 = [−4

3
, 1]

and moment matrix

Ω(θ0) =

(
8/3 0
0 32/15

)
.

Remark 6.1. GMM with a diagonal metric is thus studied under the most favourable

conditions as compared to GEL. When θ = θ0 the GEL criterion function is asymptot-

ically equivalent to that GMM but, importantly, is not generally for θ ∈ ΘP0/{θ0}. In

this example the moment matrix Ω(θ) cannot be diagonal everywhere on Θ0 even when

ΘP0 is a singleton, i.e., ω1 = ω2 = 0, as is likely to be the case in practice for moment

inequality models when the moment matrix cannot be diagonal everywhere on Θ0.

Experimental data are generated as random samples of size n = 50, 100, 500 and

1000 from the joint distribution of (y, x) . Each simulation experiment comprises 500

replications.

6.2 Criteria

The criteria nQ̂j
n(θ), (j =EL, ET, CUE, GMM), are considered where Q̂j

n(θ) = P̂ ρ
n(θ)

(3.5),, (j =EL, ET, CUE), with ρ(v) = log(1 − v) [EL] empirical likelihood, ρ(v) =

exp(−v) − 1 [ET] exponential tilting and ρ(v) = −1/2[(1 + v)2 − 1] [CUE] continu-

ous updating estimator respectively with Q̂GMMn (θ) = Q̂W
n (θ) [GMM] the GMM ob-

jective function with the metric Wn(θ) diagonal with diagonal elements those of the

efficient moment equality metric Ω̂n(θ)−1 thus mimicing the approach in CHT section

4.2, pp.1265-67.

Each criterion is evaluated across the grid Θn = {−9, ..., 0, ..., 10u}.1

1To reduce computer processing time the grid spacing was increased for values of θ in Θn further
away from the bounds defining ΘP0 , though always maintaining dH(ΘP0 ,Θn) = O(1/n).
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6.3 Level

The definitions of the level cjn used to evaluate the coverage probability P{nQ̂j
n(θ) ≤ cjn}

are

cjn ∈ {ĉjn, log log n/2, log n/2,
√
n/2},

where ĉjn = infΘn nQ̂
j
n(θ) + 0.001, (j =EL, ET, CUE, GMM), with the grid Θn given

in section 6.2.

Remark 6.2. Hence, the moment function satisfies the degeneracy condition CHT

Condition C.3, p.1255, see Appendix B, rendering each set estimator a consistent esti-

mator of the identified set ΘP0 ; see section 4.

6.4 Results

Figures 1-4 about here

Figures 1-4 indicate that the coverage probability P{nQ̂j
n(θ) ≤ cjn} converges to 1 for

θ ∈ ΘP0 for ĉjn > infθ∈Θn nQ̂
j
n(θ) verifying the consistency results for GMM and GEL of

Theorems 4.1 and 4.2 and with cjn/n→ 0; cf. Remarks 4.2 and 4.5.

With faster rates of growth for the level cjn the coverage probability P{nQ̂j
n(θ) ≤ cjn}

is closer to 1 for more θ ∈ ΘP0 . However, there is also a tendence for an increase in the

coverage probability P{nQ̂j
n(θ) ≤ cjn} for θ ∈ Θ/ΘP0 ; this is especially marked in the

smaller samples, see Figures 1 and 2 with n = 50 and 100 respectively, for EL and ET as

compared with CUE and GMM when θ > 1, the upper bound of the identified set ΘP0 .

The reverse appears to be the case for θ < −4/3, the lower bound of ΘP0 . CUE exhibits

very hign coverage probabilities for θ < −4/3; to a lesser extent a similar occurence is

observed for GMM whereas the coverage probabilities for both EL and ET are close to

zero for θ < −4/3. The differences in coverage probabilities when θ > 1 for EL and ET

as compared to CUE and GMM are much less pronounced than those for θ < −4/3.

For the larger sample sizes n = 500 and 1000 the coverage probabilities are very similar

for EL, ET, CUE, GMM for both θ ∈ ΘP0 and θ > 1 but CUE and GMM continue

to display very poor properties, especially CUE; see Figures 3 and 4.

To study the properties of the conservative inferential procedures described in sec-

tion 5.1 based on the GEL confidence region estimator Θ̂ρ
n(ĉρ(1 − α)) (4.2), the quan-

tiles of the bounding statistic supθ∈ΘP0
Q̂

Ω−1

n
(θ) (5.1) are required where Q̂

Ω−1

n
(θ) =

[m̂n(θ)]′−Ω̂n(θ)−1[m̂n(θ)]−. As described in Remark 5.3 of section 5.1 suitable estimates
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are provided by simulation of the quantiles from Ĉ
Ω−1∗
n = supθ∈Θ̂n

Q̂
Ω−1∗
n

(θ) where Q̂
Ω−1∗
n

(θ) =

||[v∗n(θ) + ξ̂n(θ)]−||Ω̂n(θ)−1 . Note that if interest is in ascertaining whether a hypothe-

sised identified set Θ0
P0

is credible by examining whether Θ0
P0
⊆ Θ̂ρ

n(c∗Ω−1(1− α)), where

c∗Ω−1(1 − α) is the 1 − α quantile of Ĉ
Ω−1∗
n , it is only necessary to take the supremum

of Q̂
Ω−1∗
n

(θ) over Θ0
P0

rather than an estimator Θ̂n which greatly simplifies inference and

also does not add any further sampling uncertainty to the estimate of the distribution of

the limit variate CΩ−1 ; see below Remark 5.2.

Figure 5 about here

Figure 5 displays the estimated quantiles of supθ∈ΘP0
nQ̂n(θ)j, (j =ET, EL, CUE),

together with those of the bounding variate supθ∈Θ
P0

Q̂
Ω−1∗
n

(θ) (5.1). As expected these

are bounded below by those of supθ∈ΘP0
Q̂

Ω−1∗
n

(θ) with the bound rather conservative for

the range 1 − α ∈ (0.9, 1.0) typically used in practice for inference. The ET, EL and

CUE quantiles are almost identical at all sample sizes which corroborates empirically

their first order equivalence on ΘP0 detailed in Theorem 4.2. The corresponding quantile

estimates for supθ∈Θ0
Q̂GMMn (θ) are also plotted for comparison although the quantile

lower bound does not apply to GMM.

7 Concluding Remarks

This paper examines the properties of GEL methods for the estimation of the identi-

fied set in models specified by unconditional moment inequality constraints. The paper

extends the results for GMM estimation in CHT section 4, pp.1261-1267, to permit a non-

diagonal weight matrix in the GMM criterion, in particular, the inverse of the moment

variance matrix, the optimal GMM metric appropriate for moment equality conditions.

Unlike the moment equality context, this extension of GMM to GEL is relatively non-

trivial. Analogously to moment equality condition models, an asymptotic equivalence

exists between various scaled optimised GEL criteria and that for GMM with optimal

moment equality weight matrix. Consequently, similarly to CHT, conditions are provided

for consistent GEL estimation of the identified set at the parametric rate n1/2. When the

moment matrix is nondiagonal on the identified set the limit of the scaled optimised GEL

statistic differs from that for GMM with diagonal weight matrix which the case studied

in CHT section 4, pp.1261-1267. To the best of our knowledge there are, as yet, no

results for the asymptotic validity of a bootstrap or sub-sampling approximation to the
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limiting distribution of these statistics; cf. the application of CHT section 3.4, pp.1257-

1258, to GMM with a diagonal weight matrix given in CHT section 4, pp.1261-1267. A

conservative confidence region estimator for the identified set is therefore developed. The

GMM criterion with non-diagonal weight matrix may be bounded above by a statistic

the limit of which can be approximated using a resampling method similar to that de-

scribed in CHT Remarks 4.2, pp.1263-1264, and 4.5, p.1267, for GMM with a diagonal

weight matrix. Conservative GMM and GEL confidence region estimators for the true

parameter, cf. Rosen (2008), are also described. A simulation study for a nonlinear

interval nonlinear conditional mean regression model corroborates the main theoretical

results of the paper with favourable small sample properties for conservative EL and ET

confidence region estimators for the identified set.

Appendix

The argument θ is suppressed for expositional simplicity throughout the Appendices

where there is no possibility of confusion.

Throughout the Appendix, C will denote a generic positive constant that may be

different in different uses with CS, M and T the Cauchy-Schwarz, Markov and triangle

inequalities respectively. In addition UWL is a uniform weak law of large numbers; CMT

the continuous mapping theorem; w.p.a.1 “with probability approaching one” and λmin(·)
and λmax(·) the minimum and maximum eigenvalues respectively of ·.

The following convention is employed. EP0 [mj(z, θ)] < 0, (j = 1, ..., a), EP0 [mj(z, θ)] =

0, (j = a+1, ..., a+b), and EP0 [mj(z, θ)] > 0, (j = a+b+1, ..., dm). Defining c = dm−a−b,
a, b and thus c depend on θ. Vectors are correspondingly partitioned, e.g., s = (s′a, s

′
b, s
′
c)
′

such that sa corresponds to EP0 [mj(z, θ)] < 0, (j = 1, ..., a), i.e., those a elements of s

for which (2.1) is false, sb to EP0 [mj(z, θ)] = 0, (j = a+ 1, ..., a+ b), i.e., those b elements

of s corresponding to the b binding moment inequalities and sc to EP0 [mj(z, θ)] > 0,

(j = a+ b+ 1, ..., dm), i.e., the remainder.

Let Λn = {λ ∈ Rdm : ‖λ‖ ≤ Cn−1/2}. Also let Θ−εP0 = {θ ∈ Θ : d(θ,Θ\ΘP0) ≥ ε}
where ε > 0. A closed ball of radius δ > 0 is denoted by Bδ = {θ ∈ Rdθ : ‖θ‖ ≤ δ}.
Recall Θ′ is a neighbourhood of Θ in Rdθ .

Recall the GMM sample criterion (3.1) Q̂W
n (θ) = inft≥0 ‖m̂n(θ)− t‖2

Wn(θ). Also define

Q̄W
n (θ) = inft≥0 ‖m̂n(θ)− t‖2

W (θ) and nQW
n (θ) = infsb∈Rb+,sc∈Rc ‖vn(θ)− s‖2

Wn(θ). Recall

the corresponding GMM population criterion QW (θ) = inft≥0 ‖m(θ)− t‖2
W (θ), θ ∈ Θ,

where m(θ) = EP0 [m(z, θ)].
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Define

t̂n(θ) = arg min
t≥0
‖m̂n(θ)− t‖2

Wn(θ) ,

i.e., Q̂W
n (θ) =

∥∥m̂n(θ)− t̂n(θ)
∥∥2

Wn(θ)
.

Appendix A: Preliminary Lemmas

To simplify the Proofs for CHT Conditions C.1, p.1252, and C.2, p.1253, Lemmas A.1

and A.2 show that the weighting matrix Wn(θ) in the GMM criterion Q̂W
n (θ) (3.1) may

be replaced by W (θ) w.p.a.1 uniformly θ ∈ Θ, i.e., nQ̂W
n (θ) = nQW

n (θ) + op(1) uniformly

θ ∈ Θ.

Lemma A.1. Let Assumptions A.1, A.2-GMM and A.3 be satisfied. Then

sup
θ∈ΘP0

∣∣∣nQ̂W
n (θ)− nQW

n (θ)
∣∣∣ = op(1).

Proof. The proof closely follows that for Proposition 3, pp.115-116, in Rosen (2008).

Consider

nQ̂W
n (θ) = inf

t≥0
n ‖m̂n(θ)− t‖2

Wn(θ)

= inf
s≥−n1/2m(θ)

‖vn(θ)− s‖2
Wn(θ)

where s = n1/2(t−m(θ)). Write ŝn(θ) = arg min
s≥−n1/2m(θ)

‖vn(θ)− s‖2
Wn(θ).

Suppose θ ∈ ΘP0 . Thus, sa is empty, i.e., a = 0; also c = dm − b and m(θ) ≥ 0,

θ ∈ ΘP0 . Let mc(θ) = (mb+1(θ), ...,mdm(θ))′. In this case

nQ̂W
n (θ) = inf

sb≥0,sc≥−n1/2mc(θ)
‖vn(θ)− s‖2

Wn(θ)

= ‖vn(θ)− ŝn(θ)‖2
Wn(θ)

with solution ŝn(θ) = (ŝbn(θ)′, ŝcn(θ)′)′ = arg minsb≥0,sc≥−n1/2mc(θ) ‖vn(θ)− s‖2
Wn(θ). Now

nQW
n (θ) = inf

sb∈Rb+,sc∈Rc
‖vn(θ)− s‖2

Wn(θ)

= ‖vn(θ)− sn(θ)‖2
Wn(θ)

with solution sn(θ) = (sbn(θ)′, scn(θ)′)′ = arg minsb∈Rb+,sc∈Rc ‖vn(θ)− s‖2
Wn(θ). Note that

scn(θ) = vcn(θ), θ ∈ ΘP0 , and thus, from Lemma 1, p.115, of Rosen (2008), w.p.a.1
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nQW
n (θ) = vbn(θ)′(W bb

n (θ))−1vbn(θ) where W bb
n (θ) denotes the top left hand b × b sub-

matrix of Wn(θ)−1.

To show that supθ∈ΘP0

∣∣∣nQ̂W
n (θ)− nQW

n (θ)
∣∣∣ = op(1), i.e., supθ∈ΘP0

‖ŝn(θ)− sn(θ)‖ =

op(1), it is only necessary to demonstrate

sup
θ∈ΘP0

‖ŝcn(θ)− scn(θ)‖ = op(1)

or supθ∈ΘP0
‖ŝcn(θ)− vcn(θ)‖ = op(1). Now, since vn is P -Donsker, supθ∈Θ ‖vn(θ)‖ =

Op(1) by Assumption A.3, i.e., for any ε, δ > 0, there exists N(ε, δ) such that, for all

n > N(ε, δ), P{supθ∈ΘP0
‖vn(θ)‖ < ε} > 1 − δ. Choose ε = maxj supθ∈ΘP0

mj(θ) such

that for all n > N(ε, δ)

P{ sup
θ∈ΘP0

‖vn(θ)‖ < max
j

sup
θ∈ΘP0

mj(θ)} > 1− δ.

In particular, for all n > N(ε, δ), with probability at least 1 − δ, supθ∈ΘP0
|vjn(θ)| <

maxj supθ∈Θm
j(θ) and, thus, ŝjn(θ) = vjn(θ), (j = b+ 1, ..., dm), uniformly θ ∈ ΘP0 , i.e.,

P{ sup
θ∈ΘP0

‖ŝcn(θ)− vcn(θ)‖ = 0} > 1− δ.

Therefore,

nQ̂W
n (θ) = nQW

n (θ) + op(1)

uniformly θ ∈ ΘP0 .�

Lemma A.2. Let Assumptions A.1, A.2-GMM and A.3 be satisfied. Then

inf
θ∈Θ/ΘP0

nQ̂W
n (θ)

p→∞.

Proof. Let θ ∈ Θ/ΘP0 . In this case, since sa is no longer empty, define ma(θ) =

(m1(θ), ...,ma(θ))′. Hence,

nQ̂W
n (θ) = inf

s≥−n1/2m(θ)
‖vn(θ)− s‖2

Wn(θ)

= inf
sa≥−n1/2ma(θ),sb≥0,sc≥−n1/2mc(θ)

‖vn(θ)− s‖2
Wn(θ)

≥ inf
sa≥−n1/2ma(θ),sb∈Rb+,sc∈Rc

‖vn(θ)− s‖2
Wn(θ)

≥ inf
sa≥−n1/2ma(θ)

‖van(θ)− sa‖2
(Waa

n (θ))−1
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w.p.a.1 where W aa
n (θ) denotes the a×a top left hand sub matrix of Wn(θ)−1 corresponding

to ma(θ); see Lemma 1, p.115, of Rosen (2008). Now supθ∈Θ ‖vn(θ)‖ = Op(1) by Assump-

tion A.3. Thus, since −n1/2ma(θ) → ∞ if θ ∈ Θ/ΘP0 and supθ∈Θ ‖Wn(θ)−W (θ)‖ =

op(1) with W (θ) uniformly p.d. from Assumption A.2-GMM(b), the statistic nQ̂W
n (θ)

diverges, i.e., nQ̂W
n (θ)

p→∞, uniformly θ ∈ Θ/ΘP0 .�

Lemma A.3. Let Assumptions A.1, A.2-GMM and A.3 be satisfied. Then

nQ̂W
n (θ) = inf

sb∈Rb+,sc∈Rc
‖v(θ)− s‖2

W (θ) + op(1)

uniformly θ ∈ ΘP0 .

Proof. Now supθ∈Θ ‖Wn(θ)−W (θ)‖ = op(1) by Assumption A.2-GMM(b). Thus,

nQW
n (θ) = vbn(θ)′(W bb(θ))−1vbn(θ)+op(1)

∥∥vbn(θ)
∥∥2

− from Lemma 1, p.115, of Rosen (2008),

as scn(θ) = vcn(θ), θ ∈ ΘP0 , where W bb(θ) denotes the top left hand b × b sub-matrix of

W (θ)−1. Then, from Lemma A.1,

nQ̂W
n (θ) = inf

sb∈Rb+,sc∈Rc
‖vn(θ)− s‖2

W (θ) + op(1)

uniformly θ ∈ ΘP0 , noting supθ∈Θ

∥∥vbn(θ)
∥∥ = Op(1). Now supθ∈Θ ‖vn(θ)− v(θ)‖ = op(1)

by vn P -Donsker from Assumption A.3 yielding

nQ̂W
n (θ) = inf

sb∈Rb+,sc∈Rc
‖v(θ)− s‖2

W (θ) + op(1)

uniformly θ ∈ ΘP0 .�

Define

s(θ) = arg min
sb∈Rb+,sc∈Rq−b

‖v(θ)− s‖2
W (θ) .

Lemma A4. Suppose that Assumptions A.1, A.2-GMM and A.3 hold. Then

sup
θ∈ΘP0

‖s(θ)‖ = Op(1).

Proof. The dependence on θ is ignored for ease of exposition.

Now,

inf
sb∈Rb+,sc∈Rc

‖v − s‖2
W = inf

sb∈Rb+
‖(v − s)b‖2

Wbb

where (·)b denotes the first b elements of (·); see Lemma 1, p.115, of Rosen (2008).
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Therefore, from the first order conditions, either (a) [−Wbb(v−s)b]j = 0 and sj > 0 or

(b) [−Wbb(v−s)b]j > 0 and sj = 0, (j = 1, ..., b). Define J = {j : [−Wbb(v−s)b]j = 0 and

sj > 0, (j = 1, ..., b)}. Now, from (a) and (b),
∑

k∈J Wbbjk(v − s)k = −
∑

k/∈J Wbbjkv
k =

Op(1), j ∈ J , uniformly θ ∈ ΘP0 , since supθ∈Θ ‖v(θ)‖ = Op(1) and supθ∈Θ ‖W (θ)‖ =

O(1) by Assumptions A.2-GMM(b) and A.3. Hence, sj = Op(1), j ∈ J , uniformly

θ ∈ ΘP0 and sj = 0, j ∈ J c. Hence the result follows because (v−s)c = −WccWcb(v−s)b;
see eq. (22), p.115, of Rosen (2008).�

Appendix B: Proofs for GMM

Appendix B establishes the validity of CHT Conditions C.1-C.3 for the GMM criterion

nQ̂W
n (θ) (3.1) under Assumptions A.1, A.2-GMM and A.3-A.5. CHT Conditions C.4 and

C.5 are established for the bounding GMM statistic nQ̂
W

n
(θ) (5.1). The relevant CHT

constants and sequences are defined as γ = 2, an = n and bn = n1/2. See CHT Theorem

4.2, p.1266.

CHT Condition C.1. Consistency: (a) The parameter space Θ is a nonempty com-

pact subset of Rdθ . (b) There is a lower semi-continuous population criterion function

Q : Θ → R+ such that infΘQ = 0. Let ΘP0 = arg infΘQ be the set of its minimisers,

called the identified set. (c) There is a sample criterion function Q̂n(θ) = Q̂n(θ, {zi}ni=1)

that takes values in R+ and is jointly measurable in the parameter θ ∈ Θ and the data zi,

(i = 1, ..., n) defined on a complete probability space (Ω,F , P ). (d) The sample criterion

function is uniformly no smaller than the population function in large samples, that is,

supΘ(Q − Q̂n)+ = Op(n
−1/2). (e) The sample criterion converges to the limit criterion

function over the identified set ΘP0 at the rate 1/n, that is, supΘP0
Q̂n = Op(n

−1).

Proof. (a) Holds by Assumption A.1(a). (b) Recall the population GMM criterion

function QW (θ) = inft≥0 ‖m(θ)− t‖2
W (θ) ≥ 0; see (3.3). Now, tj(θ) = mj(θ) if mj(θ) > 0

and 0 if mj(θ) = 0, (j = 1, ..., dm), θ ∈ ΘP0 . Hence, QW (θ) takes a zero value on ΘP0 , i.e.,

infθ∈ΘQ
W (θ) = 0. (c) Holds by Assumptions A.1(b) and A.1(d). (d) Lemmas A.1 and

A.3 establish that nQ̂W
n (θ) = infsb∈Rb+,sc∈Rdm−b ‖v(θ)− s‖2

W (θ) + op(1) uniformly θ ∈ ΘP0

and Lemma A.2 that nQ̂W
n (θ)

p→ ∞ uniformly θ ∈ Θ/ΘP0 . (e) By (b) QW (θ) = 0

uniformly θ ∈ ΘP0 . Thus supθ∈ΘP0

∣∣∣Q̂W
n (θ)−QW (θ)

∣∣∣ = supθ∈ΘP0

∣∣∣Q̂W
n (θ)

∣∣∣ = Op(n
−1)

again using Lemmas A.1 and A.3.�
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CHT Condition C.2. Existence of a Polynomial Minorant: There exist positive

constants (δ, κ) such that for an ε ∈ (0, 1) there are (κε, nε) such that for all n ≥ nε,

Q̂n(θ) ≥ κ · [d(θ,ΘP0) ∧ δ]2 uniformly on {θ ∈ Θ : d(θ,ΘP0) ≥ (κε/n)1/2} with probability

at least 1− ε.

Proof. Write W (θ) = X(θ)Λ(θ)X(θ)′, θ ∈ Θ, where the matrix of eigenvectors

X(θ) is orthonormal, i.e., X(θ)−1 = X(θ)′, and eigenvalue matrix Λ(θ) diagonal, θ ∈ Θ.

Hence, since X(θ)X(θ)′ = Idm , as supθ∈Θ ‖Wn(θ)−W (θ)‖ = op(1) from Assumption

A.2-GMM(b), w.p.a.1 uniformly θ ∈ Θ,

nQ̂W
n (θ) ≥ inf

θ∈Θ
λmin(Wn(θ)) · nmin

t≥0
‖m̂n(θ)− t‖2

= inf
θ∈Θ

λmin(W (θ)) ·
∥∥n1/2m̂n(θ)

∥∥2

−

= inf
θ∈Θ

λmin(W (θ)) ·
∥∥vn(θ) + n1/2m(θ)

∥∥2

−

= inf
θ∈Θ

λmin(W (θ)) ·
∥∥n1/2m(θ)

∥∥2

−

×
∥∥vn(θ) + n1/2m(θ)

∥∥2

− /
∥∥n1/2m(θ)

∥∥2

−

where the inequality follows from Assumption A.2-GMM(b) since infθ∈Θ λmin(W (θ)) > 0

as W (θ) is uniformly p.d. θ ∈ Θ. Now, by Assumption A.4,
∥∥n1/2m(θ)

∥∥2

− ≥ C · n ·
(d(θ,ΘP0) ∧ δ)2 for some C > 0 and δ > 0. Therefore, as in CHT Proof of Theorem 4.2

Step 1, p.1278, for any ε > 0, with probability at least 1− ε,

nQ̂W
n (θ) ≥ 1

2
inf
θ∈Θ

λmin(W (θ)) · C · n · (d(θ,ΘP0) ∧ δ)2

uniformly {θ ∈ Θ : d(θ,ΘP0) ≥ (κε/n)1/2}, n > nε, for some (κε, nε), from supθ∈Θ ‖vn(θ)‖ =

Op(1) by the P -Donsker property of Assumption A.3 and ‖y + x‖− / ‖x‖− → 1 as

‖x‖− →∞ for any y ∈ Rdm .�

CHT Condition C.3. Degeneracy: There is a sequence of subsets Θn of Θ, which

could be data dependent, such that Q̂n vanishes on these subsets, that is, Q̂n(θ)−infθ∈Θ Q̂n(θ) =

0 for each θ ∈ Θn, for each n, and these sets can approximate the identified set ar-

bitrarily well in the Hausdorff distance, that is, dH(Θn,ΘP0) ≤ εn for some sequence

εn = Op(n
−1/2).
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Proof. Similarly to the Proof of CHT Condition C.2 above, w.p.a.1 uniformly θ ∈
ΘP0 ,

nQ̂W
n (θ) ≤ sup

θ∈Θ
λmax(W (θ)) · nmin

t≥0
‖m̂n(θ)− t‖2

= sup
θ∈Θ

λmax(W (θ)) ·
∥∥vn(θ) + n1/2m(θ)

∥∥2

−

≤ sup
θ∈Θ

λmax(W (θ)) ·
dm∑
j=1

[vjn(θ) + n1/2mj(θ)]2−

≤ sup
θ∈Θ

λmax(W (θ)) · dm · [Op(1) + n1/2 · C · (d(θ,Θ\ΘP0) ∧ δ)]2−

where the first inequality follows from W (θ) uniformly p.d. θ ∈ Θ and bounded by

Assumption A.2-GMM(b), the second by T and the third inequality by Assumption A.5.

The conclusion follows as in CHT Proof of Theorem 4.2 Step 2, p.1278, since, with

εn = Op(n
−1/2), Q̂W

n (θ) = 0 for θ ∈ Θ−εnP0
.�

The Proofs of CHT Conditions C.4, p.1256, and C.5, p.1257, given below concern

the bounding statistic nQ̂
W

n
(θ) (5.1) for the GMM criterion nQ̂W

n (θ) (3.1). These re-

sults establish the validity of the asymptotically conservative inference procedure for ΘP0

described in section 5.1.

Define CWn = supθ∈ΘP0
Q̂
W

n
(θ) and CW = supθ∈ΘP0

||[v(θ) + ξ(θ)]−||2W (θ) where ξj(θ) = 0

if mj(θ) = 0, (j = 1, ..., b), and ξj(θ) =∞ if mj(θ) > 0, (j = b+ 1, ..., dm), θ ∈ ΘP0 .

CHT Condition C.4. Convergence of CWn : P [CWn ≤ cW ] → P [CW ≤ cW ] for each

cW ∈ [0,∞), where the distribution function of CW is non-degenerate and continuous on

[0,∞).

Proof. Define θn(λ) = θ + n−1/2λ and lWn (θ, λ) = nQ̂
W

n
(θn(λ)). Then, for (θ, λ) ∈

Θ× Bδ,

lWn (θ, λ) = [n1/2m̂n(θn(λ))]′−Wn(θn(λ))[n1/2m̂n(θn(λ))]−

= [vn(θn(λ)) + n1/2m(θn(λ))]′−Wn(θn(λ))[vn(θn(λ)) + n1/2m(θn(λ))]−

=
∥∥[vn(θn(λ)) + n1/2m(θn(λ))]−

∥∥2

Wn(θn(λ))

First, by the P -Donsker property of vn(θ) of Assumption A.3, vn(θ) ⇒ v(θ) and

v(θ) stochastically equicontinuous. Hence, vn(θn(λ)) ⇒ v(θ) uniformly (θ, λ) ∈ Θ × Bδ.
Secondly, from Assumption A.2-GMM(b), supθ∈Θ |Wn(θ)−W (θ)| = op(1) and W (θ)
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continuous, thus Wn(θn(λ))
p→ W (θ) uniformly (θ, λ) ∈ Θ × Bδ. Therefore, uniformly

(θ, λ) ∈ Θ× Bδ,

lWn (θ, λ) =
∥∥[v(θ) + n1/2m(θn(λ))]−

∥∥2

W (θ)
+ op(1). (B.1)

Next define lW∞ (θ, λ) = [v(θ)+M(θ)λ+ξ(θ)]′−W (θ)[v(θ)+M(θ)λ+ξ(θ)]− = ‖[v(θ) +M(θ)λ+ ξ(θ)]−‖2
W (θ).

By Assumption A.4 n1/2m(θn(λ)) = M(θ)λ + ξ(θ) + o(1) uniformly (θ, λ) ∈ ΘP0 × Bδ.
Therefore, from (B.1),

lWn (θ, λ)− lW∞ (θ, λ) = op(1) (B.2)

uniformly L∞(ΘP0 × Bδ).
Now, by definition, CWn = supθ∈ΘP0

lWn (θ, 0) and CW = supθ∈ΘP0
lW∞ (θ, 0). Therefore,

by (B.2),

CWn
d→ CW . (B.3)

�

CHT Condition C.5. Approximability of CWn : Let Θn be any sequence of subsets of

Θ such that dH(Θn,ΘP0) = op(n
−1/2) and define CW ′n = supθ∈Θn nQ̂

W

n
(θ). Then for any

cW ≥ 0, we have that P [CW ′n ≤ cW ] = P [CWn ≤ cW ] + o(1).

Proof. By arguments similar to those in CHT Proof of Theorem 4.2 Step 4, pp.1279-

80,

CW ′n = sup
θ∈Θn

nQ̂
W

n
(θ)

= sup
θ∈Θn

∥∥[v(θ) + n1/2m(θ) + op(1)]−
∥∥2

W (θ)

= sup
θ∈ΘP0

∥∥[v(θ) + n1/2m(θ) + op(1)]−
∥∥2

W (θ)

using the approximation device in the Proof of CHT Condition C.4 above, cf. CHT

Proof of Theorem 4.2 Step 2, p.1278, the stochastic equicontinuity of θ → (v(θ),W (θ))

and
∥∥n1/2(m(θ)−m(θ′))

∥∥ = o(1) uniformly on {θ, θ′ ∈ Θ : ‖θ − θ′‖ ≤ op(n
−1/2)}. The

conclusion then follows as in CHT Proof of Theorem 4.2 Step 3, p.1279.�
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Appendix C: Proofs for GEL

Let Λn = {λ ∈ Rdm : ‖λ‖ ≤ Cn−1/2}. In the following Q̂n(θ) and Q(θ) refer to sample

and population GMM criteria that respectively employ the efficient metrics Ω̂n(θ)−1 and

Ω(θ)−1 appropriate for unconditional moment equaility restrictions.

Lemma C.1. If Assumptions A.1 and A.2-GEL hold then (a) max1≤i≤n supθ∈Θ,λ∈Λn |λ′mi(θ)|
p→

0; (b) w.p.a.1, Λn ⊆ Λ̂n(θ) for all θ ∈ Θ.

Proof. Follows directly from Newey and Smith (2004, Lemma A1, p.239) and the

extension Parente and Smith (2011, Lemma A.1, p.101).�

Statements and proofs are given for the alternative GEL criterion P̃ ρ
n(θ) (E.6) defined

in Appendix D; those for the GEL criterion P̂ ρ
n(θ) (3.4) and alternative GEL criteria

P̃ ρ,k
n (θ), (k = a, b), (E.1) and (E.3), follow similarly.

Recall Ω̂n(θ) =
∑n

i=1mi(θ)mi(θ)
′/n. The next Lemma and its proof mirror Newey

and Smith (2004,Lemma A2, p.239) for the moment equality case.

Lemma C.2. Let θ ∈ ΘP0. Let the arbitrary sequence τn(θ) obey ‖m̂n(θ)− τn(θ)‖ =

Op(n
−1/2) uniformly θ ∈ ΘP0. If Assumptions A.1 and A.2-GEL are satisfied, then

λ̃n(θ) = arg maxλ∈Λ̂n(θ) P̃
ρ
n(θ, λ, τn(θ)) exists w.p.a.1, λ̃n(θ) = Op(n

−1/2) and supλ∈Λ̂n(θ) P̃
ρ
n(θ, λ, τn(θ)) ≤

Op(n
−1).

Proof. By Assumption A.2-GEL and UWL Ω̂n(θ)
p→ Ω(θ) uniformly θ ∈ Θ. Then,

by Ω(θ) p.d. uniformly θ ∈ Θ from Assumption A.1(c), the smallest eigenvalue of Ω̂n(θ)

is bounded away from zero w.p.a.1. By Lemma C.1 and twice continuous differentiability

of ρ(·) in a neighborhood of zero from Assumption A.2-GEL(b), P̃ ρ
n(θ, λ, τn(θ)) is twice

continuously differentiable on Λn w.p.a.1 uniformly θ ∈ Θ. Write λn = λn(θ). Then,

λn = arg maxλ∈Λn P̃
ρ
n(θ, λ, τn(θ)) exists w.p.a.1. Furthermore, for any λ̇ on the line

segment joining λn and 0, by Lemma C.1 and ρ2(0) = −1, max1≤i≤n ρ2(λ̇′mi(θ)) < −1/2

w.p.a.1. Hence, by a Taylor expansion around λ = 0 with Lagrange remainder, there is
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λ̇ on the line joining λn and 0 such that

0 = P̃ ρ
n(θ, 0, τn(θ))

≤ P̃ ρ
n(θ, λn, τn(θ)) = −(m̂n(θ)− τn(θ))′λn +

1

2
λ′n[

n∑
i=1

ρ2(λ̇′mi(θ))mi(θ)mi(θ)
′/n]λn

≤ −(m̂n(θ)− τn(θ))′λn −
1

4
λ′nΩ̂n(θ)λn ≤ ‖λn‖‖m̂n(θ)− τ(θ)‖ − C‖λn‖2

uniformly θ ∈ ΘP0 . Adding C‖λn‖2 to both sides and dividing by ‖λn‖ yields C‖λn‖ ≤
‖m̂n(θ)− τn(θ)‖ w.p.a.1. By hypothesis, m̂n(θ)− τn(θ) = Op(n

−1/2), θ ∈ ΘP0 , and, thus,

‖λn‖ = Op(n
−1/2). Therefore, w.p.a.1 λn ∈ int(Λn) and hence ∂P̃ ρ

n(θ, λn, τn(θ))/∂λ = 0,

the first order conditions for an interior maximum. By Lemma C.1, w.p.a.1 λn ∈ Λ̂n(θ), so

by the concavity of P̃ ρ
n(θ, λ, τn(θ)) and convexity of Λ̂n(θ) it follows that P̃ ρ

n(θ, λn, τn(θ)) =

supλ∈Λ̂ρn(θ) P̃
ρ
n(θ, λ, τn(θ)), giving the first and second conclusions with λn = λ̃n. Then,

by the last inequality of the above equation, ‖m̂n(θ) − τn(θ)‖ = Op(n
−1/2), and ‖λn‖ =

Op(n
−1/2), we obtain P̃ ρ

n(θ, λ̃n, τn(θ)) ≤ ‖λ̃n‖‖m̂n(θ) − τn(θ)‖ − C‖λ̃n‖2 = Op(n
−1) uni-

formly θ ∈ ΘP0 .�

Lemma C.3. Let θ ∈ ΘP0. If Assumptions A.1 and A.2-GEL are satisfied, then

λ̃n(θ) = arg maxλ∈Λ̂n(θ) P̃
ρ
n(θ, λ, τ̃n(θ)) exists w.p.a.1, λ̃n(θ) = Op(n

−1/2), supθ∈ΘP0
‖m̂n(θ)− τ̃n(θ)‖ ≤

Op(n
−1/2) and supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τ̃n(θ)) ≤ Op(n

−1).

Proof. From the Proofs of Lemmas E.1 and E.3 below the population auxiliary

paramater λ(θ) = 0, θ ∈ ΘP0 . Thus, the population slackness parameter τ(θ) =

EP0 [m(z, θ)] ≥ 0. In particular, τ j(θ) > [=]0 if and only if mj(θ) > [=]0, (j = 1, ..., dm).

Let λ̃n satisfy P̃ ρ
n(θ, λ̃n, τ(θ)) = supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τ(θ)). Then, P̃ ρ

n(θ, λ̃n(θ), τ̃n(θ)) ≤
P̃ ρ
n(θ, λ̃n(θ), τ(θ)) ≤ P̃ ρ

n(θ, λ̃n, τ(θ)) uniformly θ ∈ ΘP0 . Therefore, from the Proof of

Lemma C.2, λ̃n(θ) = Op(n
−1/2) and P̃ ρ

n(θ, λ̃n(θ), τ̃n(θ)) ≤ Op(n
−1), i.e.,

inf
τ∈T

sup
λ∈Λ̂n(θ)

P̃ ρ
n(θ, λ, τ) ≤ Op(n

−1)

uniformly θ ∈ ΘP0 .

Let λ̄n = −n−1/2(m̂n(θ) − τ̃n(θ))/‖m̂n(θ) − τ̃n(θ)‖ and, thus, λ̄n ∈ Λn, θ ∈ ΘP0 . By

Lemma C.1, max1≤i≤n |λ̄′nmi(θ)|
p→ 0 and λ̄n ∈ Λ̂n(θ) w.p.a.1. Thus, for any λ̇ on the

line joining λ̄n and 0, w.p.a.1 ρ2(λ̇′mi(θ)) ≥ −C, (i = 1, ..., n). Also, by UWL and

Assumption A.2, the largest eigenvalue of
∑n

i=1mi(θ)mi(θ)
′/n is bounded above w.p.a.1.
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An expansion then gives

P̃ ρ
n(θ, λ̄n, τ̃n(θ)) = −(m̂n(θ)− τ̃n(θ))′λ̄n +

1

2
λ̄′n[

n∑
i=1

ρ2(λ̇′mi(θ))mi(θ)mi(θ)
′/n]λ̄n

≥ n−1/2 ‖m̂n(θ)− τ̃n(θ)‖ − C 1

2
λ̄′nΩ̂n(θ)λ̄n ≥ n−1/2 ‖m̂n(θ)− τ̃n(θ)‖ − Cn−1

w.p.a.1. uniformly θ ∈ ΘP0 . Hence,

n−1/2 ‖m̂n(θ)− τ̃n(θ)‖ − Cn−1 ≤ P̃ ρ
n(θ, λ̄, τ̃n(θ)) ≤ P̃ ρ

n(θ, λ̃n(θ), τ̃n(θ)) ≤ Op(n
−1).

(C.1)

Solving eq. (C.1) for ‖m̂n(θ)− τ̃n(θ)‖ then gives

‖m̂n(θ)− τ̃n(θ)‖ ≤ Op(n
−1/2). (C.2)

uniformly θ ∈ ΘP0 .�

Recall P̃ ρ
n(θ) = infτ∈T supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τ).

Lemma C.4. Under Assumptions A.1 and A.2-GEL

2nP̃ ρ
n(θ) = nQ̂n(θ) + op(1)

= inf
sb∈Rb+,sc∈Rdm−b

‖v(θ)− s‖2
Ω(θ)−1 + op(1),

uniformly θ ∈ ΘP0.

Proof. Cf. Canay (2010, Proof of Theorem 3.1, pp.418-419). Let the arbitrary

sequence τn obey ‖m̂n(θ)− τn‖ = Op(n
−1/2); cf. Lemmas C.1 and C.2 above. Define

λ̃n(τn) = arg maxλ∈Λ̂n(θ) P̃
ρ
n(θ, λ, τn). Therefore, cf. the Proof of Lemma C.2 above,

w.p.a.1, λ̃n(τn) ∈ int(Λ̂n(θ)) and λ̃n(τn) satisfies the first order conditions for an interior

maximum ∂P̃ ρ
n(θ, λ, τn)/∂λ = 0, i.e., λ̃n(τn) = −Ω̂−1

n (m̂n(θ) − τn) + op(n
−1/2) uniformly

θ ∈ ΘP0 . Hence, defining λ̇(τ) on the line joining λ̃n(τ) and 0,

2nP̃ ρ
n(θ, λ̃n(τ̃n), τ̃n) = 2 inf

τ∈T

n∑
i=1

ρ(λ̃n(τ)′mi(θ)) + λ̃n(τ)′τ

= 2 inf
τ∈T
−n(m̂n(θ)− τ)′λ̃n(τ) +

1

2
nλ̃n(τ)′[

n∑
i=1

ρ2(λ̇(τ)′mi(θ))mi(θ)mi(θ)
′/n]λ̃n(τ)

= 2 inf
τ∈T
−n(m̂n(θ)− τ)′λ̃n(τ)− 1

2
nλ̃n(τ)′Ω̂n(θ)λ̃n(τ) + op(1)

= inf
τ∈T

n ‖m̂n(θ)− τ‖2
Ω̂−1n

+ op(1)

= nQ̂n(θ) + op(1),
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uniformly θ ∈ ΘP0 , using Lemmas C.1 and C.3.

It then follows by Lemma A.3 in Appendix A that, uniformly θ ∈ ΘP0 ,

2nP̃ ρ
n(θ, λ̃n, τ̃n) = inf

t≥0
n ‖m̂n(θ)− t‖2

Ω(θ)−1 + op(1)

= inf
sb∈Rb+,sc∈Rdm−b

‖v(θ)− s‖2
Ω(θ)−1 + op(1).

�

Lemma C.5. Under Assumptions A.1-A.2-GEL, 2nP̃ ρ
n(θ)

p→ ∞ uniformly θ ∈
Θ/ΘP0.

Proof. The structure of the following argument closely resembles that of Smith

(2007, Proof of Theorem 4.1, pp.112-114); cf. KTA, Proof of Theorem 3.1, pp.1686-1688,

for EL.

Let c > 0 such that (−c, c) ∈ V . Define Cn = {z ∈ Rdz : supθ∈Θ ‖m(z, θ)‖ ≤
cn1/2} and mni(θ) = Iimi(θ), where Ii = I{zi ∈ Cn}. Let λ̄(θ, τ) = −(m(θ) − τ)/(1 +

‖m(θ)− τ‖); note that n−1/2λ̄(θ, τ) ∈ Λn.

Then,

sup
λ∈Λ̂n(θ)

P̃ ρ
n(θ, λ, τ) ≥ Q̃ρ

n(θ, τ) (C.3)

=
n∑
i=1

ρ(n−1/2λ̄(θ, τ)′mni(θ))/n+ n−1/2λ̄(θ, τ)′τ.

Now

ρ(n−1/2λ̄(θ, τ)′mni(θ)) + n−1/2λ̄(θ, τ)′τ = −n−1/2λ̄(θ, τ)′(mi(θ)− τ) + rni(t),

for some t ∈ (0, 1) and remainder

rni(t) = n−1/2λ̄(θ, τ)′mi(θ)(1− Ii) (C.4)

+n−1/2λ̄(θ, τ)′mni(θ)[ρ1(tn−1/2λ̄(θ, τ)′mni(θ))− ρ1(0)].

From Lemma C.4 supθ∈Θ,n−1/2λ∈Λn,1≤i≤n
∣∣ρ1(n−1/2λ′mi(θ))− ρ1(0)

∣∣ p→ 0. Also max1≤i≤n(1−
Ii) = op(1). Hence, from eq. (C.4),

n1/2

n∑
i=1

rni(t)/n = op(1)λ̄(θ, τ)′m̂n(θ) + op(1)λ̄(θ, τ)′m̂n(θ)

−op(1)λ̄(θ, τ)′
n∑
i=1

mi(θ)(1− Ii)/n

= op(1)λ̄(θ, τ)′m̂n(θ)
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uniformly θ ∈ Θ and τ ∈ T . Thus,

n1/2 sup
θ∈Θ,τ∈T

∣∣∣∣∣
n∑
i=1

rni(t)/n

∣∣∣∣∣ ≤ op(1) sup
θ∈Θ
‖m̂n(θ)‖

= op(1)Op(1) = op(1)

as supθ∈Θ ‖m̂n(θ)‖ ≤ supθ∈Θ ‖m(θ)‖+ op(1) by T and UWL. Therefore, substituting eq.

(C.3), n1/2Q̃ρ
n(θ, τ) = −λ̄(θ, τ)′(m̂n(θ)− τ) + op(1) uniformly θ ∈ Θ and τ ∈ ∧T . By UWL

n1/2 sup
θ∈Θ,τ∈T

∣∣∣Q̃n(θ, τ)− Q̃(θ, τ)
∣∣∣ = op(1), (C.5)

where

n1/2Q̃(θ, τ) = −λ̄(θ, τ)′(m(θ)− τ)

=
‖m(θ)− τ‖2

1 + ‖m(θ)− τ‖ .

Thus, from eqs. (C.3) and (C.5), cf. KTA, eqs. (A.6) and (A.7), p.1687,

n1/2 inf
τ∈T

sup
λ∈Λ̂n(θ)

P̃ ρ
n(θ, λ, τ) ≥ n1/2 inf

τ∈T
Q̃(θ, τ) + op(1) (C.6)

uniformly θ ∈ Θ.

The function ‖m(θ)− τ‖2 /(1 + ‖m(θ)− τ‖) is continuous in θ and τ . By definition

of the identified set ΘP0 , infτ∈T ‖m(θ)− τ‖2 /(1 + ‖m(θ)− τ‖) takes the value zero for

all θ ∈ ΘP0 and is strictly positive for all θ ∈ Θ/ΘP0 , i.e.,

inf
τ∈T

Q̃(θ, τ) = 0⇐⇒ θ ∈ ΘP0

and

inf
τ∈T

Q̃(θ, τ) > 0⇐⇒ θ /∈ ΘP0 .

Therefore, from eq. (C.6), uniformly θ ∈ Θ/ΘP0 , n
1/2 infτ∈T supλ∈Λ̂n(θ) P̃

ρ
n(θ, λ, τ)

p→
∞.

Similarly to the Proof of Condition C.1(d) for GMM, 2nP̃ ρ
n(θ) = 2nP̃ ρ

n(θ, λ̃n(θ), τ̃n(θ))
p→

∞ uniformly θ ∈ Θ/ΘP0 .�

Recall from section 3.4 the population criterion defined by P̃ ρ(θ) = infτ∈T supλ∈Rdm P̃
ρ(θ, λ, τ)

with P̃ ρ(θ, λ, τ) = EP0 [ρ(λ′m(z, θ))−ρ0]+λ′τ correponding to the alternative GEL crite-

rion P̃ ρ
n(θ) (E.6). Proofs are presented for P̃ ρ

n(θ) (E.6); those for P̂ ρ
n(θ) (3.4) and P̃ ρ,k

n (θ),

(k = a, b), (E.1) and (E.3), follow similarly. In the following discussion P̃ ρ(θ) substitutes
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for Q̂n(θ) in the statements of CHT Conditions C.1-C.3 in Appendix B.

Proof of CHT Condition C.1. (a) Holds by Assumption A.1. (b) Follows for

P̃ ρ(θ) from Lemmas E.1 and E.3 below as P̃ ρ(θ) = P̂ ρ(θ) = 0 for all θ ∈ ΘP0 , i.e.,

infθ∈Θ P̃
ρ(θ) = 0. (c) Holds by Assumption A.2-GEL(a). (d) Lemma C.4 establishes

that 2nP̃ ρ
n(θ, λ̃n(θ), τ̃n(θ)) = nQ̂n(θ) + op(1) uniformly θ ∈ ΘP0 and Lemma C.5 that

2nP̃ ρ
n(θ, λ̃n(θ), τ̃n(θ))

p→ ∞ uniformly θ ∈ Θ/ΘP0 . (e) By (b) P̃ ρ(θ) = 0 uniformly

θ ∈ ΘP0 . Thus supθ∈ΘP0

∣∣∣P̃ ρ
n(θ)− P̃ ρ(θ)

∣∣∣ = supθ∈ΘP0

∣∣∣P̃ ρ
n(θ)

∣∣∣ = Op(n
−1) using Lemma

C.3.�

Proof of CHT Condition C.2. Similarly to the Proof of Condition C.2 for GMM

in Appendix B, from Lemmas C.4 and C.5, w.p.a.1 uniformly θ ∈ Θ,

2nP̃ ρ
n(θ) = nQ̂n(θ)

≥ inf
θ∈Θ

∥∥n1/2m(θ)
∥∥2

−

×
∥∥vn(θ) + n1/2m(θ)

∥∥2

− /λmax(Ω(θ))
∥∥n1/2m(θ)

∥∥2

− .

Therefore, for any ε > 0, with probability at least 1− ε,

2nP̃ ρ
n(θ) ≥ 1

2
inf
θ∈Θ

C · n · (d(θ,ΘP0) ∧ δ)2/λmax(Ω(θ))

uniformly {θ ∈ Θ : d(θ,ΘP0) ≥ (κε/n)1/2}, n > nε, for some (κε, nε), from supθ∈Θ ‖vn(θ)‖ =

Op(1) by the P -Donsker property of Assumption A.3, Assumption A.4 and ‖y + x‖− / ‖x‖− →
1 as ‖x‖− →∞ for any y ∈ Rdm .�

Proof of CHT Condition C.3. Similarly to the Proof of Condition C.3 for GMM

in Appendix B, w.p.a.1 uniformly θ ∈ ΘP0 ,

2nP̃ ρ
n(θ) = nQ̂n(θ)

≤ sup
θ∈Θ

dm · [Op(1) + n1/2 · C · (d(θ,Θ\ΘP0) ∧ δ)]2−/λmin(Ω(θ))

where the inequality follows from Ω(θ) uniformly p.d. θ ∈ Θ and bounded by Assumption

A.2-GMM(b) and Assumption A.5. The conclusion follows as in the Proof of Condition

C.3 for GMM, since with εn = Op(n
−1/2), P̃ ρ

n(θ) = 0 on Θ−εnP0
.�

[33]



Appendix D: Identified Set

Recall the partition of the index set {1, ..., dm} according to mj(θ) < 0, (j = 1, ..., a),

mj(θ) = 0, (j = a+ 1, ..., a+ b) and mj(θ) > 0, (j = a+ b+ 1, ..., dm). Let c = dm−a− b.
Note again that a, b and thus c depend on θ. Also recall the notation m(θ) = EP0 [m(z, θ)].

Recall Θ̂ρ
P0

= {θ ∈ Θ : θ = arg minθ∈Θ P̂
ρ(θ)} (3.9).

Lemma D.1. Suppose that Assumptions A.1 and A.2-GEL are satisfied. Then

Θ̂ρ
P0

= ΘP0.

Proof. Now

P̂ ρ(θ) = sup
λ≥0

EP0 [ρ(λ(θ)′m(z, θ))]

= EP0 [ρ(λ(θ)′m(z, θ))] ≥ 0

since ρ(λ′m(z, θ)) = 0 at λ = 0.

Fix θ ∈ ΘP0 ; thus a = 0. Consider j ∈ {b + 1, ..., dm}, i.e., mj(θ) > 0. Suppose that

the associated auxiliary parameter λj(θ) > 0. Now

EP0 [ρ(λ(θ)′m(z, θ))] ≤ ρ(λ(θ)′m(θ))

< 0;

a contradiction. The first inequality holds by Jensen’s inequality from ρ(·) < 0 and the

strict concavity of ρ(·) on V by Assumption A.2-GEL(b). The second inequality follows

from λ(θ)′m(θ) > 0 since mj(θ) = 0, j ∈ {1, ..., b}, and λj(θ) ≥ 0 with at least one

λj(θ) > 0, j ∈ {b + 1, ..., dm}, from above. Hence, the associated auxiliary parameter

λj(θ) = 0, j ∈ {b + 1, ..., dm}, and EP0 [ρ(λ(θ)′m(z, θ))] is maximised at ρ(0) by setting

λj(θ) = 0, j ∈ {1, ..., dm}. Therefore, P̂ ρ(θ) = 0 if θ ∈ ΘP0 , i.e., ΘP0 ⊆ Θ̂ρ
P0

.

To conclude, suppose a 6= 0, i.e., θ ∈ Θ/ΘP0 , and so there exists j ∈ {1, ..., a} such that

mj(θ) < 0. Now, as above, EP0 [ρ(λ′m(z, θ))] = 0 and ∂EP0 [ρ(λ′m(z, θ)) − ρ(0)]/∂λj =

EP0 [ρ1(λ′m(z, θ))mj(z, θ)] > 0 at λ = 0. Define λ such that λj = ε for some small ε > 0

and λk = 0 for k 6= j. Then, by continuity, P̂ ρ(θ) ≥ EP0 [ρ(λjmj(z, θ))] > 0. Cf. Canay

(2010, Proof of Lemma B.3, p.423). Hence, θ ∈ Θ/Θ̂ρ
P0

, i.e., Θ̂ρ
P0
⊆ ΘP0 .�

Appendix E: Alternative GEL Criteria

A number of alternative but equivalent GEL criteria may also be defined.
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Mirroring the GMM criterion (3.1), the introduction of the dm-vector of complemen-

tary slackness parameters τ ≥ 0, cf. (2.3), directly into (3.4) defines the alternative GEL

criterion

P̃ ρ,a
n (θ, λ, τ) =

n∑
i=1

ρ(λ′(mi(θ)− τ))/n. (E.1)

The GEL criterion P̃ ρ,a
n (θ, λ, τ) (E.1) is then optimised over λ ∈ Λ̃a

n(θ, τ), where Λ̃a
n(θ, τ) =

{λ : λ′(mi(θ) − τ) ∈ V , i = 1, ..., n}, and τ ∈ T for given θ ∈ Θ with the slackness pa-

rameter space T = {τ ∈ Rdm : τ ≥ 0, ‖τ‖ ≤ C} and C > 0 defined by the boundedness

condition in Assumption A.1(b). The slackness parameter estimator τ̃an(θ) solves the

corresponding f.o.c. with respect to τ , i.e., ∂P̃ ρ,a
n (θ, λ̃an(θ), τ̃an(θ))/∂τ ≥ 0, τ ≥ 0. Now

λ̃an(θ) ≥ 0 since ∂P̃ ρ,a
n (θ, λ̃an(θ), τ̃an(θ))/∂τ = −

∑n
i=1 ρ1(λ̃an(θ)′(mi(θ)− τ̃an(θ)))λ̃an(θ)/n and∑n

i=1 ρ1(λ̃an(θ)′(mi(θ) − τ̃an(θ))) < 0 from Assumption A.2-GEL(b). In particular, either

λ̃a,jn (θ) = 0 and τ̃a,jn (θ) > 0 or λ̃a,jn (θ) > 0 and τ̃a,jn (θ) = 0, (j = 1, ..., dm), and, thus,

λ̃an(θ)′τ̃an(θ) = 0. Hence, the auxiliary parameter constraint space Λ̃a
n(θ, τ) simplifies to

Λ̂n(θ). The auxiliary parameter estimator λ̃an(θ) solves the corresponding f.o.c. with

respect to λ, i.e.,
∑n

i=1 ρ1(λ̃an(θ)′(mi(θ) − τ̃an(θ)))(mi(θ) − τ̃an(θ))/n = 0. Consequently,

the slackness parameter estimator τ̃an(θ) satisfies

τ̃an(θ) =

∑n
i=1 ρ1(λ̃an(θ)′(mi(θ)− τ̃an(θ)))mi(θ)∑n

k=1 ρ1(λ̃an(θ)′(mk(θ)− τ̃an(θ)))

=
n∑
i=1

π̂ρi (θ, λ̃
a
n(θ))mi(θ),

since λ̃an(θ)′τ̃an(θ) = 0; cf. (3.6). Therefore, λ̃an(θ) = λ̂n(θ) and, thus, P̃ ρ,a
n (θ, λ̃n(θ), τ̃n(θ)) =

P̂ ρ
n(θ).

Remark E.1. Note that limn→∞P{τ̃an(θ) ∈ T } = 1 since supθ∈Θ ‖m̂n(θ)−m(θ)‖ =

op(1) by UWL from Assumption A.1(b). Thus, the upper bound C is not binding in T
w.p.a.1.

Remark E.2. The GEL implied probabilities defined from (E.2),

π̃ρ,ai (θ, λ, τ) =
ρ1(λ′(mi(θ)− τ))∑n
k=1 ρ1(λ′(mk(θ)− τ))

, (i = 1, ..., n), (E.2)

are non-negative and sum to unity. Moreover, since λ̃an(θ)′τ̃an(θ) = 0, π̃ρ,ai (θ, λ̃an(θ), τ̃an(θ)) =

π̂ρi (θ, λ̃
a
n(θ)), (i = 1, ..., n).
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The GEL criterion (E.1) may be re-centred by separating out the slackness parameter

τ ≥ 0 to form

P̃ ρ,b
n (θ, λ, τ) =

n∑
i=1

[ρ(λ′mi(θ))− ρ(λ′τ)]/n, (E.3)

which is then optimised over λ ∈ Λ̃b
n(θ, τ), where Λ̃b

n(θ, τ) = {λ : λ′mi(θ) ∈ V , i =

1, ..., n, λ′τ ∈ V} and τ ∈ T for given θ ∈ Θ. As above λ̃an(θ) ≥ 0 since ∂P̃ ρ,b
n (θ, λ̃bn(θ), τ̃ bn(θ))/∂τ =

−ρ1(λ̃n(θ)′τ̃n(θ))λ̃n(θ) ≥ 0 noting ρ1(λ̃n(θ)′τ̃n(θ)) < 0 from Assumption A.2-GEL(b).

Similarly, either λ̃b,jn (θ) = 0 and τ̃ b,jn (θ) > 0 or λ̃b,jn (θ) > 0 and τ̃ b,jn (θ) = 0, (j =

1, ..., dm), and, thus, λ̃bn(θ)′τ̃ bn(θ) = 0. Examining the f.o.c. with respect to λ, i.e.,∑n
i=1 ρ1(λ̃bn(θ)′mi(θ))mi(θ)/n − ρ1(λ̃bn(θ)′τ̃ bn(θ))τ̃ bn(θ)) = 0, the slackness parameter esti-

mator τ̃ bn(θ) satisfies

τ̃ bn(θ) =

∑n
i=1 ρ1(λ̃bn(θ)′mi(θ))mi(θ)/n

ρ1(λ̃bn(θ)′τ̃ bn(θ))
. (E.4)

Hence, the auxiliary parameter constraint space Λ̃b
n(θ, τ) is not fully binding and reduces

to Λ̂n(θ) as previously. Consequently, P̃ ρ,b
n (θ, λ̃bn(θ), τ̃ bn(θ)) = P̂ ρ

n(θ).

Remark E.3. Noting ρ1(0) = −1, since λ̃bn(θ)′τ̃ bn(θ), the slackness parameter esti-

mator (E.4) τ̃ bn(θ) = −
∑n

i=1 ρ1(λ̃bn(θ)′mi(θ))mi(θ)/n; cf. (3.6). The GEL implied prob-

abilities implicitly defined from (E.4) as ρ1(λ′mi(θ))/nρ1(θ′τ), (i = 1, ..., n), although

non-negative by Assumption A.2-GEL(b), do not sum to unity. Even if evaluated at

λ̃bn(θ) and τ̃ bn(θ), the GEL implied probabilities −ρ1(λ̃bn(θ)′mi(θ))/n, (i = 1, ..., n), do not

sum to unity. Exploiting (3.7) guarantees non-negativity and unit summability, i.e.,

π̃ρ,bi (θ, λ, τ) =
ρ1(λ′mi(θ))∑n
k=1 ρ1(λ′mk(θ))

, (i = 1, ..., n). (E.5)

Moreover, π̃ρ,bi (θ, λ̃bn(θ), τ̃ bn(θ)) = π̂ρi (θ, λ̃
b
n(θ)), (i = 1, ..., n).

Consider the Lagrangean

P̃ ρ
n(θ, λ, τ) =

n∑
i=1

ρ(λ′mi(θ))/n+ λ′τ (E.6)

in which the slackness parameter vector τ now denotes a dm-vector of Lagrange multipli-

ers associated with the inequality constraint λ ≥ 0; cf. G∗(θ, v, λ) defined in Moon and

Schorfheide (2009, eq. (16), p.140). Here the GEL criterion P̃ ρ
n(θ, λ, τ) (E.6) is optimised
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over λ ∈ Λ̂n(θ) and τ ∈ T for given θ ∈ Θ. The Lagrange multiplier parameter esti-

mator τ̃n(θ) satisfies ∂P̃ ρ
n(θ, λ̃n(θ), τ̃n(θ))/∂τ ≥ 0, τ ≥ 0. Thus, the auxiliary parameter

estimator λ̃n(θ) ≥ 0 as ∂P̃ ρ
n(θ, λ̃n(θ), τ̃n(θ))/∂τ = λ̃n(θ). Moreover, λ̃n(θ)′τ̃n(θ) = 0 with,

in particular, λ̃jn(θ) = 0 and τ̃ jn(θ) > 0 or λ̃jn(θ) > 0 and τ̃ jn(θ) = 0, (j = 1, ..., dm). From

the f.o.c. with respect to λ, i.e.,
∑n

i=1 ρ1(λ̃n(θ)′mi(θ))mi(θ)/n+ τ̃n(θ) = 0, the Lagrange

multiplier estimator τ̂n(θ) ≥ 0 satisfies

τ̃n(θ) = −
n∑
i=1

ρ1(λ̃n(θ)′mi(θ))mi(θ)/n, (E.7)

cf. (3.6). Substituting λ̃n(θ) and τ̃n(θ), P̃ ρ
n(θ, λ̃n(θ), τ̃n(θ)) = P̂ ρ

n(θ, λ̃n(θ)). Therefore,

from the strict concavity of ρ(·) on V by Assumption A.2-GEL(b), λ̃n(θ) = λ̂n(θ) and,

likewise, P̃ ρ
n(θ, λ̃n(θ), τ̃n(θ)) = P̂ ρ

n(θ).

Remark E.4. The GEL implied probabilities defined from (E.7) as−ρ1(λ̃n(θ)′mi(θ))/n,

(i = 1, ..., n), are non-negative by Assumption A.2-GEL(b) but do not sum to unity.

The redefinition π̃ρi (θ, λ̃n(θ), τ̃n(θ)) = ρ1(λ̃n(θ)′mi(θ))/
∑n

k=1 ρ1(λ̃n(θ)′mk(θ)) guarantees

non-negativity and unit summability; cf. Remark D.3. Moreover, π̃ρi (θ, λ̃n(θ), τ̃n(θ)) =

π̂ρi (θ, λ̃n(θ)), (i = 1, ..., n).

E.1 GEL Estimator Equivalence

Lemma E.1. The solutions to the saddle point problems (3.4) and (E.1) are identical,

i.e., (a) if (λ̃(θ), τ̃(θ)), where τ̃(θ) ∈ int(T ), is a saddlepoint of P̃ ρ,a
n (θ, λ, τ) then λ̃(θ) is

also a maximiser of P̂ ρ
n(θ, λ); (b) if λ̂(θ) is a maximiser of P̂ ρ

n(θ, λ) and τ̂(θ) ∈ int(T ),

where τ̂ j(θ) =
∑n

i=1 π̂
ρ
i (θ, λ̂(θ))mj

i (θ) if λ̂j(θ) = 0 and 0 if λ̂j(θ) > 0, (j = 1, ..., dm), then

(λ̂(θ), τ̂(θ)) is a saddlepoint of P̃ ρ,c
n (θ, λ, τ).

Proof. To prove (a), first note that λ̃ ≥ 0, since the solution τ̃ satisfies ∂P̃ ρ,a
n (θ, λ̃, τ̃)/∂τ ≥

0 and ∂P̃ ρ,a
n (θ, λ, τ)/∂τ = −

∑n
i=1 ρ1(λ′(mi(θ)−τ))λ/n with

∑n
i=1 ρ1(λ′(mi(θ)−τ))/n < 0

by Assumption A.2-GEL(b). In particular, λ̃j = 0 and τ̃ j > 0 or λ̃j > 0 and τ̃ j = 0,

(j = 1, ..., dm), and λ̃′τ̃ = 0. The solution λ̃ satisfies ∂P̃ ρ,a
n (θ, λ̃, τ̃)/∂λ = 0, i.e.,∑n

i=1 ρ1(λ̃′(mi(θ)−τ̃))(mi(θ)−τ̃)/n = 0, and, thus, τ̃ j =
∑n

i=1 ρ1(λ̃′mi(θ))m
j
i (θ)/

∑n
k=1 ρ1(λ̃′mk(θ)) >

0 if λ̃j = 0 or 0 if λ̃j > 0, (j = 1, ..., dm). Now P̃ ρ,a
n (θ, λ, τ̃) = P̂ ρ

n(θ, λ)−
∑n

i=1 ρ1(λ′(mi(θ)−
τ∗))λ

′τ̃ /n ≥ P̂ ρ
n(θ, λ) for τ∗ ∈ (0, τ̃) since λ ≥ 0 and

∑n
i=1 ρ1(λ′(mi(θ) − τ∗)) < 0 by

Assumption A.2-GEL(b). Therefore, from the saddlepoint property with respect to λ,
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P̂ ρ
n(θ, λ̃) = P̃ ρ,a

n (θ, λ̃, τ̃) ≥ P̃ ρ,a
n (θ, λ, τ̃) ≥ P̂ ρ

n(θ, λ).

For (b), λ̂′τ̂ = 0 from the definition of τ̂ with τ̂ j = 0 and λ̂j > 0 or τ̂ j > 0 and

λ̂j = 0 (j = 1, ..., dm), from the first order condition ∂P̂ ρ
n(θ, λ)/∂λ ≤ 0, λ ≥ 0, cf.

(3.6). For the saddle point property with respect to τ ≥ 0, P̃ ρ,a
n (θ, λ̂, τ̂) = P̂ ρ

n(θ, λ̂) ≤
P̃ ρ,a
n (θ, λ̂, τ) since λ̂ ≥ 0 and P̃ ρ,a

n (θ, λ̂, τ) = P̂ ρ
n(θ, λ̂) −

∑n
i=1 ρ1(λ̂′(mi(θ) − τ∗))λ̂′τ/n for

τ∗ ∈ (0, τ) with
∑n

i=1 ρ1(λ̂′(mi(θ) − τ∗))/n < 0 from Assumption A.2-GEL(b). For λ,

P̃ ρ,a
n (θ, λ̂, τ̂) = P̂ ρ

n(θ, λ̂) ≥ P̃ ρ,a
n (θ, λ, τ̂) since, noting ∂P̃ ρ,a

n (θ, λ̂, τ̂)/∂λ = 0, P̂ ρ,a
n (θ, λ, τ̂) =

P̃ ρ,a
n (θ, λ̂, τ̂)+

∑n
i=1 ρ2(λ′∗(mi(θ)−τ̂))[(mi(θ)−τ̂)′(λ−λ̂)]2/2n ≤ P̃ ρ,a

n (θ, λ̂, τ̂) for λ∗ ∈ (λ, λ̂)

and ρ2(·) < 0 by the concavity of ρ(·) from Assumption A.2-GEL(b).�

Lemma E.2. The solutions to the saddle point problems (3.4) and (E.3) are iden-

tical, i.e., (a) if (λ̃(θ), τ̃(θ)), where τ̃(θ) ∈ int(T ), is a saddlepoint of P̃ ρ,b
n (θ, λ, τ)

then λ̃(θ) is also a maximiser of P̂ ρ
n(θ, λ); (b) if λ̂(θ) is a maximiser of P̂ ρ

n(θ, λ) and

τ̂(θ) ∈ int(T ), where τ̂ j(θ) = −
∑n

i=1 ρ1(λ̂(θ)′m(θ))mj
i (θ)/n if λ̂j(θ) = 0 and 0 if

λ̂j(θ) > 0, (j = 1, ..., dm), then (λ̂(θ), τ̂(θ)) is a saddlepoint of P̃ ρ,b
n (θ, λ, τ).

Proof. The proof follows on similar lines to that for Lemma E.1.

For (a), λ̃ ≥ 0 since τ̃ satisfies ∂P̃ ρ,b
n (θ, λ̃, τ̃)/∂τ ≥ 0 and ∂P̃ ρ,b

n (θ, λ, τ)/∂τ = −ρ1(λ′τ)λ

with ρ1(λ′τ) < 0 by Assumption A.2-GEL(b). Likewise, λ̃′τ̃ = 0 with λ̃j = 0 and τ̃ j > 0

or λ̃j > 0 and τ̃ j = 0, (j = 1, ..., dm). In this case λ̃ satisfies ∂P̃ ρ,b
n (θ, λ̃, τ̃)/∂λ = 0, i.e.,∑n

i=1 ρ1(λ̃′mi(θ))mi(θ)/n − ρ1(λ̃′τ̃)τ̃ = 0, and, thus, τ̃ j = −
∑n

i=1 ρ1(λ̃′mi(θ))m
j
i (θ)/n if

λ̃j = 0 or 0 if λ̃j > 0, (j = 1, ..., dm), from the normalisation ρ1(0) = −1 of Remark 3.3.

Now P̃ ρ,b
n (θ, λ, τ̃) = P̂ ρ

n(θ, λ)− ρ1((λ′τ̃)∗)λ
′τ̃ ≥ P̂ ρ

n(θ, λ) for (λ′τ̃)∗ ∈ (0, (λ′τ̃)) since λ ≥ 0

and ρ1((λ′τ̃)∗) < 0 by Assumption A.2-GEL(b). Therefore, P̂ ρ
n(θ, λ̃) = P̃ ρ,b

n (θ, λ̃, τ̃) ≥
P̃ ρ,b
n (θ, λ, τ̃) ≥ P̂ ρ

n(θ, λ).

For the proof of (b), as in the Proof of Lemma E.1(b), λ̂′τ̂ = 0 with τ̃ j = 0 and

λ̂j > 0 or τ̃ j > 0 and λ̂j = 0, (j = 1, ..., dm). For the saddle point property with respect

to τ ≥ 0, P̃ ρ,b
n (θ, λ̂, τ̂) = P̂ ρ

n(θ, λ̂) ≤ P̃ ρ,b
n (θ, λ̂, τ) since λ̂ ≥ 0 and P̃ ρ,b

n (θ, λ̂, τ) = P̂ ρ
n(θ, λ̂)−

ρ1(λ̂′τ∗)λ̂
′τ for τ∗ ∈ (0, τ) with ρ1(λ̂′τ∗) < 0. For λ, P̃ ρ,b

n (θ, λ̂, τ̂) = P̂ ρ
n(θ, λ̂) ≥ P̃ ρ,b

n (θ, λ, τ̂)

since, noting ∂P̃ ρ,b
n (θ, λ̂, τ̂)/∂λ = 0 and ρ2(·) < 0, P̂ ρ,b

n (θ, λ, τ̂) = P̃ ρ,b
n (θ, λ̂, τ̂)+

∑n
i=1 ρ2(λ′∗mi(θ))[mi(θ)

′

×(λ− λ̂)]2/2n+
∑n

i=1 ρ2(λ′∗τ̂)[τ̂ ′(λ− λ̂)]2/2n ≤ P̃ ρ,a
n (θ, λ̂, τ̂) for λ∗ ∈ (λ, λ̂).�

Lemma E.3. The solutions to the saddle point problems (3.4) and (E.6) are iden-

tical, i.e., (a) if (λ̃(θ), τ̃(θ)), where τ̃(θ) ∈ int(T ), is a saddlepoint of P̃ ρ
n(θ, λ, τ) then

λ̃(θ) is also a maximiser of P̂ ρ
n(θ, λ); (b) if λ̂(θ) is a maximiser of P̂ ρ

n(θ, λ) and τ̂(θ) ∈
int(T ), where τ̂ j(θ) = −

∑n
i=1 ρ1(λ̂(θ)′mi(θ))m

j
i (θ)/n if λ̂j(θ) = 0 and 0 if λ̂j(θ) > 0,
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(j = 1, ..., dm), then (λ̂(θ), τ̂(θ)) is a saddlepoint of P̃ ρ
n(θ, λ, τ).

Proof. The proof again follows along similar lines to the Proof of Lemma E.1. Cf.

Moon and Schorfheide (2009, Lemma A.1, p.150).

For (a), λ̃ ≥ 0 since τ̃ satisfies ∂P̃ ρ
n(θ, λ̃, τ̃)/∂τ ≥ 0 and ∂P̃ ρ

n(θ, λ, τ)/∂τ = λ. Likewise,

λ̃′τ̃ = 0 with λ̃j = 0 and τ̃ j > 0 or λ̃j > 0 and τ̃ j = 0, (j = 1, ..., dm). In this case λ̃

satisfies ∂P̃ ρ,b
n (θ, λ̃, τ̃)/∂λ = 0, i.e.,

∑n
i=1 ρ1(λ̃′mi(θ))mi(θ)/n + τ̃ = 0, and, thus, τ̃ j =

−
∑n

i=1 ρ1(λ̃′mi(θ))m
j
i (θ)/n if λ̃j = 0 or 0 if λ̃j > 0, (j = 1, ..., dm). Now P̃ ρ

n(θ, λ, τ̃) =

P̂ ρ
n(θ, λ) + λ′τ̃ ≥ P̂ ρ

n(θ, λ) since λ ≥ 0. Therefore, P̂ ρ
n(θ, λ̃) = P̃ ρ

n(θ, λ̃, τ̃) ≥ P̃ ρ
n(θ, λ, τ̃) ≥

P̂ ρ
n(θ, λ).

For (b), λ̂′τ̂ = 0 with τ̃ j = 0 and λ̂j > 0 or τ̃ j > 0 and λ̂j = 0, (j = 1, ..., dm), from

the first order condition ∂P̂ ρ
n(θ, λ)/∂λ ≤ 0, λ ≥ 0. For the saddle point property with

respect to τ ≥ 0, P̃ ρ
n(θ, λ̂, τ̂) = P̂ ρ

n(θ, λ̂) ≤ P̃ ρ
n(θ, λ̂, τ) since λ̂ ≥ 0. For λ, P̃ ρ

n(θ, λ̂, τ̂) =

P̂ ρ
n(θ, λ̂) ≥ P̃ ρ

n(θ, λ, τ̂) since, noting ∂P̃ ρ
n(θ, λ̂, τ̂)/∂λ = 0 and ρ2(·) < 0, P̂ ρ

n(θ, λ, τ̂) =

P̃ ρ
n(θ, λ̂, τ̂) +

∑n
i=1 ρ2(λ′∗mi(θ))[mi(θ)

′(λ− λ̂)]2/2n ≤ P̃ ρ,a
n (θ, λ̂, τ̂) for λ∗ ∈ (λ, λ̂).�

E.2 Identified Set

Alternative but equivalent population versions of the GEL identified set Θ̂ρ
P0

(3.9), cf.

Canay (2010) for EL, may be defined corresponding to the alternative GEL criteria

P̃ ρ
n(θ, λ, τ) (E.6) and P̃ ρ,k

n (θ, λ, τ), (k = a, b), (E.1), (E.3), described in Appendix E.1. The

respective population criteria are defined by P̃ ρ(θ) = infτ∈T supλ∈Rdm P̃
ρ(θ, λ, τ) with

P̃ ρ(θ, λ, τ) = EP0 [ρ(λ′m(z, θ))] + λ′τ and P̃ ρ,k(θ) = infτ∈T supλ∈Rdm P̃
ρ,k(θ, λ, τ), (k =

a, b), with P̃ ρ,a(θ, λ, τ) = EP0 [ρ(λ′(m(z, θ) − τ))] and P̃ ρ,b(θ, λ, τ) = EP0 [ρ(λ′m(z, θ)) −
ρ(λ′τ)]. The respective GEL population counterparts to identified set ΘP0 are

Θ̃ρ
P0

= {θ ∈ Θ : θ = arg min
θ∈Θ

P̃ ρ(θ)}, (E.8)

and

Θ̃ρ,k
P0

= {θ ∈ Θ : θ = arg min
θ∈Θ

P̃ ρ,k(θ)}, (k = a, b). (E.9)

Recall the partition of the index set {1, ..., dm} according to mj(θ) < 0, (j = 1, ..., a),

mj(θ) = 0, (j = a+ 1, ..., a+ b) and mj(θ) > 0, (j = a+ b+ 1, ..., dm). Let c = dm−a− b.
Note again that a, b and thus c depend on θ. Also recall the notation m(θ) = EP0 [m(z, θ)].

Recall Θ̂ρ
P0

= {θ ∈ Θ : θ = arg minθ∈Θ P̂
ρ(θ)} (3.9).
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Lemma E.4. Suppose that Assumptions A.1 and A.2-GEL are satisfied. Then

Θ̃ρ,k
P0

= ΘP0, (k = a, b).

Proof. Let P̂ ρ(θ, λ) = EP0 [ρ(λ′m(z, θ))].

First, consider the alternative GEL population criterion P̃ ρ,a(θ, λ, τ) = EP0 [ρ(λ′(m(z, θ)−
τ))] corresponding to (E.1). Now P̃ ρ,a(θ) = infτ∈T supλ∈Rdm P̃

ρ,a(θ, λ, τ). The solution

τ(θ) ≥ 0 satisfies ∂P̃ ρ,a(θ, λ, τ)/∂τ ≥ 0. Thus, since ∂P̃ ρ,a(θ, λ, τ)/∂τ = −EP0 [ρ1(λ′(m(z, θ)−
τ))]λ and EP0 [ρ1(λ′(m(z, θ)−τ))] < 0 by Assumption A.2-GEL(b), λj ≥ 0, (j = 1, ..., dm),

and λ′τ(θ) = 0. The solution λ(θ) satisfies ∂P̃ ρ,a(θ, λ, τ)/∂λ = 0, i.e., EP0 [ρ1(λ(θ)′(m(z, θ)−
τ(θ)))(m(z, θ)− τ(θ))] = 0 and, thus,

τ(θ) =
EP0 [ρ1(λ(θ)′(m(z, θ)− τ(θ)))m(z, θ)]

EP0 [ρ1(λ(θ)′(m(z, θ)− τ(θ)))]

=
EP0 [ρ1(λ(θ)′m(z, θ))m(z, θ)]

EP0 [ρ1(λ(θ)′m(z, θ))]
≥ 0.

Now P̃ ρ,a(θ, λ, τ(θ)) = P̂ ρ(θ, λ) − EP0 [ρ1(λ′(m(z, θ) − τ∗))]λ
′τ(θ) ≥ P̂ ρ(θ, λ) for τ∗ ∈

(0, τ(θ)) since λ ≥ 0 and EP0 [ρ1(λ′(m(z, θ) − τ∗))] < 0 by Assumption A.2-GEL(b).

Hence, as P̂ ρ(θ, λ(θ)) = P̃ ρ,a(θ, λ(θ), τ(θ)) ≥ P̃ ρ,a(θ, λ, τ(θ)), P̂ ρ(θ, λ(θ)) ≥ P̂ ρ(θ, λ).

That is, λ(θ) also optimises the GEL criterion P̂ ρ(θ, λ) (3.4) and therefore Θ̃ρ,a
P0

= Θ̂ρ
P0

.

Secondly, the population criterion for the GEL criterion (E.3) is P̃ ρ,b(θ, λ, τ) =

EP0 [ρ(λ′m(z, θ)) − ρ(λ′τ)] with P̃ ρ,b(θ) = minτ∈T supλ∈Rdm P̃
ρ(θ, λ, τ). The solution

τ(θ) ≥ 0 satisfies ∂P̃ ρ,b(θ, λ, τ)/∂τ ≥ 0. Likewise, since ∂P̃ ρ,b(θ, λ, τ)/∂τ = −ρ1(λ′τ)λ,

by Assumption A.2-GEL(b), λj(θ) ≥ 0, (j = 1, ..., dm), and λ′τ(θ) = 0 as above.

The solution λ(θ) satisfies ∂P̃ ρ,b(θ, λ, τ)/∂λ = 0, i.e., EP0 [ρ1(λ(θ)′m(z, θ))m(z, θ)] −
ρ1(λ(θ)′τ(θ))τ(θ) = 0 or

τ(θ) =
EP0 [ρ1(λ(θ)′m(z, θ))m(z, θ)]

ρ1(λ(θ)′τ(θ))
≥ 0.

By similar reasoning P̃ ρ,b(θ, λ, τ(θ)) = P̂ ρ(θ, λ) − ρ1(λ′τ∗)λ
′τ(θ) ≥ P̂ ρ(θ, λ) for τ∗ ∈

(0, τ(θ)) since λ ≥ 0 and ρ1(·) < 0 by Assumption A.2-GEL(b). Hence, as P̂ ρ(θ, λ(θ)) =

P̃ ρ,b(θ, λ(θ), τ(θ)) ≥ P̃ ρ,b(θ, λ, τ(θ)), P̂ ρ(θ, λ(θ)) ≥ P̂ ρ(θ, λ), i.e., λ(θ) also optimises the

GEL criterion P̂ ρ(θ, λ) (3.4).Therefore, Θ̃ρ,b
P0

= Θ̂ρ
P0

.�

Lemma E.5. Suppose that Assumptions A.1 and A.2-GEL are satisfied. Then

Θ̃ρ
P0

= ΘP0.

[40]



Proof. The population criterion corresponding to the alternative sample GEL

criterion (E.6) is given by P̃ ρ(θ, λ, τ) = EP0 [ρ(λ′m(z, θ)) − ρ(0)] + λ′τ with P̃ ρ(θ) =

infτ∈T supλ∈Rdm P̃
ρ(θ, λ, τ). The solution τ(θ) satisfies ∂P̃ ρ(θ, λ, τ)/∂τ ≥ 0. Thus, since

∂P̃ ρ(θ, λ, τ)/∂τ = λ, λj ≥ 0, (j = 1, ..., dm), and λ′τ(θ) = 0. The solution λ(θ) satisfies

∂P̃ ρ(θ, λ, τ)/∂λ = 0, i.e., EP0 [ρ1(λ′m(z, θ))m(z, θ)] + τ(θ) = 0 or

τ(θ) = −EP0 [ρ1(λ′m(z, θ))m(z, θ)] ≥ 0.

Now P̃ ρ(θ, λ, τ(θ)) = P̂ ρ(θ, λ) + λ′τ(θ) ≥ P̂ ρ(θ, λ) since λ ≥ 0. Hence, as P̂ ρ(θ, λ(θ)) =

P̃ ρ(θ, λ(θ), τ(θ)) ≥ P̃ ρ(θ, λ, τ(θ)), P̂ ρ(θ, λ(θ)) ≥ P̂ ρ(θ, λ), i.e., λ(θ) also optimises the

GEL criterion P̂ ρ(θ, λ) (3.4).Therefore, Θ̃ρ
P0

= Θ̂ρ
P0

.�

[41]
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Figure 1: Coverage Probabilities for {nQ̂j
n(θ) ≤ cjn}, n = 50.
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Figure 2: Coverage Probabilities for {nQ̂j
n(θ) ≤ cjn}, n = 100.
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Figure 3: Coverage Probabilities for {nQ̂j
n(θ) ≤ cjn}, n = 500.
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Figure 4: Coverage Probabilities for {nQ̂j
n(θ) ≤ cjn}, n = 1000.
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