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Abstract

This paper demonstrates that a misspecified model of information processing interferes with long-run 
learning and allows inefficient choices to persist, despite sufficient information for asymptotic learning. 
I consider an observational learning environment in which agents observe a private signal about an unknown 
state and some agents observe the actions of their predecessors. Individuals face an inferential challenge 
when extracting information from the actions of others, as prior actions aggregate multiple sources of cor-
related information. A misspecified model allows for the fact that an agent may not be able to distinguish 
between new and redundant information, and may have an incorrect model of how others process this infor-
mation. When individuals significantly overestimate the amount of new information, beliefs about the state 
become entrenched and incorrect learning occurs with positive probability. When individuals sufficiently 
overestimate the amount of redundant information, beliefs fail to converge and learning is incomplete. 
Learning is complete when agents have an approximately correct model of inference, establishing that the 
correctly specified model is robust to perturbation.
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1. Introduction

Observational learning plays an important role in the transmission of information, opinions 
and behavior. People use bestseller lists to guide their purchases of books, cars and computers. 
Co-workers’ decisions to join a retirement plan influence a person’s decision to participate her-
self. Social learning also influences behavioral choices, such as whether to smoke or exercise 
regularly, or ideological decisions, such as which side of a moral or political issue to support. 
Given the gamut of situations influenced by observational learning, it is important to under-
stand how people learn from the actions of their peers. This paper explores how a misspecified 
model of information processing may interfere with asymptotic learning, and demonstrates that 
biased learning offers an explanation for how inefficient choices can persist, incorrect beliefs 
can become entrenched, or beliefs can fail to converge, despite sufficient evidence for complete 
learning.

Individuals face an inferential challenge when extracting information from the actions of 
others. An action often aggregates multiple sources of correlated information. Full rationality 
requires an agent to have a correct model of how others process this information, in order to 
parse out the new information and discard redundant information. This is a critical feature of 
standard observational learning models in the tradition of Smith and Sorensen (2000). In these 
models, agents understand exactly how preceding agents incorporate the action history into their 
decision-making rule, and are aware of the precise informational content of each action. How-
ever, what happens if agents are unsure about how to draw inference from the actions of their 
predecessors? What if they believe the actions of previous agents are more informative than is 
actually the case, or what if they attribute too many prior actions to redundant information and 
are not sensitive enough to new information? Motivated by this possibility, I allow agents to 
have a misspecified model of the information possessed by other agents. This draws a distinction 
between the perceived and actual informational content of actions.

Consider an observational learning model where individuals have common-value preferences 
that depend on an unknown state of the world. They act sequentially, observing a private signal 
before choosing an action. A fraction p of individuals also observe the actions of previous agents. 
These socially informed agents understand that prior actions reveal information about private 
signals, but fail to accurately disentangle this new information from the redundant information 
also contained in prior actions. Formally, informed agents believe that any other individual is 
informed with probability p̂, where p̂ need not coincide with p. When p̂ < p, an informed de-
cision maker attributes too many actions to the private signals of uninformed individuals. This 
leads her to overweigh information from the public history, and allows public beliefs about the 
state to become entrenched, possibly unjustifiably so. On the other hand, when p̂ > p, an in-
formed decision maker underweights the new information contained in prior actions, rendering 
beliefs more fragile to contrary information. Thus, the difference between p̂ and p determines 
the level of model misspecification.

To understand how model misspecification affects long-run learning requires careful analysis 
of the rate of information accumulation, and how this rate depends on the way informed agents 
interpret prior actions through their belief p̂. The main result of the paper (Theorem 1) specifies 
thresholds p̂1 and p̂2, such that when p̂ < p̂1 both correct and fully incorrect learning occur 
with positive probability, when p̂ > p̂2, beliefs about the state perpetually fluctuate, rendering 
learning incomplete, while when p̂ ∈ (p̂1, p̂2), correct learning occurs with probability one. The 
first two cases admit the possibility of inefficient learning: with positive probability, informed 
agents choose the inefficient action infinitely often, despite observing sufficient information to 
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learn the correct state. In the final case, informed agents will eventually choose the efficient 
action. This case includes the correctly specified model (p̂ = p), as demonstrated by the fact that 
p ∈ (p̂1, p̂2).

Fully incorrect learning or incomplete learning with oscillating beliefs are possible for some 
values of p̂ �= p because the public belief about the state is no longer a martingale. This also 
complicates the analysis on a technical level, as it is no longer possible to use the Martingale 
Convergence Theorem to establish belief convergence. The Law of the Iterated Logarithm (LIL) 
and Law of Large Numbers (LLN) are jointly used to establish belief convergence when p̂ < p̂2, 
and rule out belief convergence when p̂ > p̂2. This approach is general enough that it can be uti-
lized to examine other forms of model misspecification. Thus, the paper develops new techniques 
to analyze learning in models that are not fully Bayesian.

Model misspecification has important policy implications for interventions aimed at counter-
acting inefficient social choices. In the presence of information processing errors, the timing, 
frequency and strength of interventions – such as public information campaigns – are an im-
portant determinate of long-run efficiency. Consider a parent deciding whether there is a link 
between vaccines and autism. The parent observes public signals from the government and other 
public health agencies, along with the vaccination decisions of peers. If all parents are rational, 
then a public health campaign to inform parents that there is no link between vaccines and autism 
should eventually overturn a herd on refusing vaccinations. However, if parents do not accurately 
disentangle repeated information and attribute too many choices to new information, then observ-
ing many other parents refusing to vaccinate their children will lead to strong beliefs that this is 
the optimal choice, and make it less likely that the public health campaign is effective.1 When 
this is the case, the best way to quash a herd in which parents refuse vaccines is to release public 
information immediately and frequently. This contrasts with the fully rational case, in which the 
timing of public information release is irrelevant for long-run learning outcomes.

The sequential observational learning framework used in this paper was first modeled in 
Banerjee (1992) and Bikhchandani et al. (1992) with a binary signal space. They conclude that 
incorrect informational cascades arise with positive probability, but beliefs in these cascades are 
fragile and easily overturned by the arrival of new information. Moscarini et al. (1998) show that 
informational cascades are temporary when the state of the world changes frequently enough. 
Smith and Sorensen (2000) allow for a general signal distribution and crazy types. An unbounded 
signal space is sufficient to ensure complete learning, eliminating the possibility of inefficient 
cascades. Acemoglu et al. (2011) examines social learning in a network – the correctly specified 
model in this paper (p̂ = p) is a special case of their model.

Recent work examines the implications of information processing biases, particularly cor-
relation neglect and the failure to account for redundant information, in the social learning 
framework. Eyster and Rabin (2010) study inferential naivety – players believe prior agents’ 
actions solely reflect their private information. This confounds learning because the actions of 
initial agents receive disproportionate weight. Although similar in nature to model misspecifi-
cation, inferential naivety differs in generality and interpretation. Inferential naivety considers 
the case in which every repeated action is viewed as being independent with probability one, 
whereas with model misspecification, informed agents recognize that actions contain some re-
peated information, but misperceive the exact proportion. The analogue of inferential naivety in 
my environment corresponds to p̂ = 0 and p = 1.

1 This example abstracts from the payoff interdependencies of vaccines.
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Guarino and Jehiel (2013) apply the analogy based expectation equilibrium solution concept 
(Jehiel, 2005) to a social learning setting. Agents know the aggregate relationship between the 
state and distribution of actions, but do not understand the relationship between private informa-
tion and actions. Learning is complete in a continuous action model – although initial signals 
are overweighted, the excess weight on a signal increases linearly with time, preventing initial 
signals from permanently dominating subsequent new information. This contrasts with Eyster 
and Rabin (2010), in which the excess weight on initial signals doubles each period, allowing a 
few early signals to dominate all future signals. Levy and Razin (2015) examine the implications 
of correlation neglect in a network model of learning, and establish that beliefs converge under 
mild conditions on the network structure. Demarzo et al. (2003) introduce the notion of persua-
sion bias in a model of opinion formation in networks. Decision-makers embedded in a network 
graph treat correlated information from others as being independent, leading to informational 
inefficiencies. Mueller-Frank and Neri (2015) build on Eyster and Rabin (2010)’s concept of 
inferential naivety to study information aggregation in networks. They establish sufficient con-
ditions on the learning environment to achieve information aggregation in small networks, and 
show that in any learning environment, information aggregation fails in large enough networks.

Model misspecification is also related to level-k and cognitive hierarchy models.2 In the model 
misspecification framework, uninformed types are level-1 thinkers who follow their private signal 
while informed types are level-2 thinkers who believe other agents are a mix of level-1 and level-2 
thinkers. In a level-k model, informed agents believe that all other agents are level-1 thinkers – 
this corresponds to p̂ = 0. Thus, in both frameworks, level-2 agents misperceive the share of 
other agents who are level-2, but this paper allows level-2 agents to place positive weight on 
other agents using a level-2 decision rule.

This paper is also related to a broader literature on how information processing biases and 
model misspecification impact long-run learning. Epstein et al. (2010) show that incorrect learn-
ing can arise in a single agent model when an agent overweights signals, as is the case in this 
paper, but that complete learning obtains when an agent underweights signals. In this model, 
agents who underweight information may never learn the state. In earlier work by Eyster and 
Rabin (2005) on cursed equilibrium, a cursed player does not understand the correlation between 
a player’s type and her action choice, and therefore fails to realize a player’s action choice reveals 
information about her type.3

The organization of this paper proceeds as follows. Section 2 sets up the model and solves 
the individual decision-problem. Section 3 characterizes the asymptotic learning dynamics of a 
misspecified model of inference, while Section 4 discusses the results and concludes. All proofs 
are in the Appendix.

2. The common framework

2.1. The model

The basic set-up of this model mirrors a standard sequential learning environment.

2 Costa-Gomes et al. (2009); Camerer et al. (2004).
3 Other recent work includes Rabin and Schrag (1999), Acemoglu et al. (2016), Gottlieb (2015), Schwartzstein (2014), 

Wilson (2014) and Esponda and Pouzo (2015). There is also an older statistics literature, including Berk (1966) and 
DeGroot (1974).
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States, actions and payoffs There are two payoff-relevant states of the world, ω ∈ {L, H } with 
common prior belief P(ω = L) = 1/2. Nature selects one of these states at the beginning of the 
game. A countably infinite set of agents T = {1, 2, . . .} act sequentially and attempt to match the 
realized state of the world by making a single decision between two actions, at ∈ {�, h}, t ∈ T . 
They receive a payoff of 1 if their action matches the realized state, u(�, L) = u(h, H) = 1, and 
a payoff of 0 otherwise.

Private beliefs Before choosing an action, each agent privately observes a signal that is in-
dependent and identically distributed, conditional on the state. Following Smith and Sorensen
(2000), I work directly with the private belief, st ∈ (0, 1), which is an agent’s belief that ω = L, 
computed via Bayes’ rule after observing the private signal but not the history. Conditional on the 
state, the private belief stochastic process 〈st 〉 is i.i.d., with conditional c.d.f. Fω. Assume that 
no private signal perfectly reveals the state, which implies that FL, FH are mutually absolutely 
continuous and have common support, supp(F ). Let [b, b̄] ⊆ [0, 1] denote the convex hull of the 
support. Finally, assume that some signals are informative. This rules out dFL/dFH = 1 almost 
surely, and implies b < 1/2 < b̄. Beliefs are bounded if 0 < b < b̄ < 1, and are unbounded if 
[b, b̄] = [0, 1].

Agent types There are two types of agents, θt ∈ {I, U}. With probability p ∈ (0, 1), an 
agent is a socially informed type I who observes the action choices of her predecessors, 
ht = (a1, . . . , at−1). She uses her private signal and this history to guide her action choice. With 
probability 1 −p, an agent is a socially uninformed type U who only observes her private signal. 
An alternative interpretation for this uninformed type is a behavioral type who is not sophisti-
cated enough to draw inference from the history. This type’s decision is solely guided by the 
information contained in her private signal.

Beliefs about types Each informed individual believes that each other individual is informed 
with probability p̂ ∈ [0, 1], where p̂ need not coincide with p. An informed agent believes that 
other agents also hold the same beliefs about whether previous agents are informed or unin-
formed. Incorrect beliefs about p persist because no agent ever learns what the preceding agents 
actually observed or incorporated into their decision-making processes.4

Timing At time t , agent t observes type θt and a private signal st . If θt = I , the agent also 
observes the public history ht . Then she chooses action at .

2.2. The individual decision-problem

A decision rule specifies an action for each history and signal realization pair. I look for an 
outcome that has the nature of a Bayesian equilibrium, in the sense that agents use Bayes rule 
to formulate beliefs about the state of the world, given their (misspecified) belief about the type 
distribution, and maximize payoffs with respect to these beliefs. The decision rule of each type is 

4 Although it is admittedly restrictive to require that agents hold identical misperceptions about others, and that this 
misperception takes the form of a point-mass belief about the distribution of p, it is a good starting point to examine the 
possible implications of model misspecification. Bohren (2012) also analyzes the model in which agents begin with a 
non-degenerate prior distribution over p, and learn about p from the action history.
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common knowledge, as is the fact that all informed agents compute the same probability of any 
history ht .

It is standard to express the public belief of informed agents as a likelihood ratio,

λt = P(L|ht ; p̂)

P (H |ht ; p̂)
, (1)

which depends on the history and beliefs about the share of informed agents.5 An agent who 
holds prior belief λ and receives signal s updates to the private posterior belief q(λ, s) = λ ×(

s
1−s

)
. An uninformed agent has prior belief λ1 = 1 and an informed agent has prior belief λt . 

Guided by posterior belief q , the agent maximizes her payoff by choosing a = � if q ≥ 1, and 
a = h otherwise. An agent’s decision can be represented as a cut-off rule, s∗(λ) = 1/(λ +1), such 
that the agent chooses action � when s ≥ s∗(λ) and chooses action h otherwise. An informed 
agent in period t uses cut-off s∗(λt ), while uninformed agents use cut-off s∗(1) = 1/2.

The cascade set for action a is the set of prior beliefs such that a is optimal for all realizations 
of the private signal.

Definition 1 (Cascade set). The cascade sets for actions h and � are the sets of beliefs J h =
{λ|s < s∗(λ) ∀s ∈ supp(F )} and J � = {λ|s ≥ s∗(λ) ∀s ∈ supp(F )}, respectively.

As usual, a cascade occurs when the prior belief outweighs the strongest private belief.

Lemma 1. When private beliefs are bounded, J h = [
0, (1 − b̄)/b̄

)
and J � = [

(1 − b)/b,∞]
and when private beliefs are unbounded, J h = {0} and J � = {∞}.

Let J = J � ∪ J h. An uninformed agent is never in a cascade, since λ1 /∈ J . An informed 
agent is in a cascade if λt ∈ J . This agent chooses the same action for all s ∈ supp(F ) and her 
action reveals no private information.

When informed agents are in a cascade, information continues to accumulate from the ac-
tions of uninformed agents, and the public belief leaves the cascade set with positive probability. 
Therefore, the formation of a cascade does not necessarily imply belief convergence. If a cas-
cade does not form in finite time, the likelihood ratio may still converge to a point in the cascade 
set. The following definition introduces the notion of a limit cascade to encompass both of these 
ideas.

Definition 2 (Limit cascade). Suppose there exists a real, nonnegative random variable λ∞ such 
that λt → λ∞ almost surely. Then a limit cascade occurs if supp(λ∞) ⊂ J .

3. Learning dynamics

3.1. Overview

This section proceeds as follows. After formally defining the stochastic process 〈λt 〉 gov-
erning the evolution of the likelihood ratio, I characterize the set of stationary points; these are 
candidate limit points for 〈λt 〉. Next, I determine how the local stability of these stationary points 

5 I refer to λt as the public belief, even though it is not the belief of uninformed agents.
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depends on p̂. This establishes the dynamics of the likelihood ratio in the neighborhood of a 
stationary point. I then use the Law of the Iterated Logarithm (LIL) to show that the likelihood 
ratio converges to each locally stable point with positive probability from any initial value, which 
establishes the global stability of locally stable points. Finally, I rule out convergence to unstable 
stationary points and non-stationary points. The section concludes with a full characterization of 
the relationship between asymptotic learning outcomes and the degree of model misspecification, 
as measured by p̂.

3.2. The likelihood ratio

Let ψ(a|ω, λ; p) denote the probability of action a, given likelihood ratio λ, state ω and share 
of informed agents p. Then

ψ(h|ω,λ;p) = pFω(1/(λ + 1)) + (1 − p)Fω(1/2) (2)

and

ψ(�|ω,λ;p) = 1 − ψ(h|ω,λ;p). (3)

This probability is a weighted average of the probability that an uninformed type chooses a when 
using cut-off rule s∗(1) = 1/2 and the probability that an informed type chooses a using cut-off 
rule s∗(λ) = 1/(λ + 1), given likelihood ratio λ.

The likelihood ratio is updated based on the perceived probability of action a, ψ(a|ω, λ; p̂). 
If agents attribute a smaller share of actions to informed agents, p̂ < p, then they place more 
weight on the action revealing private information and overestimate the informativeness of prior 
actions. The opposite holds when agents attribute too large a share to informed agents. Given a 
likelihood ratio λt and action at , the likelihood ratio in the next period is λt+1 = φ(at , λt ; p̂), 
where

φ(a,λ; p̂) = λ

(
ψ(a|L,λ; p̂)

ψ(a|H,λ; p̂)

)
. (4)

The joint stochastic process 〈at , λt 〉∞t=1 is a discrete-time Markov process defined on state space 
{�, h} ×R+ with λ1 = 1. Given state {at , λt }, the process transitions to state 

{
at+1, φ(at , λt ; p̂)

}
with probability ψ(at+1|ω, φ(at , λt ; p̂); p). The stochastic properties of this process determine 
long-run learning dynamics. The challenge in establishing convergence results for 〈λt 〉 stems 
from the dependence of ψ on the current value of the likelihood ratio and the fact that 〈λt 〉 is not 
a martingale in a misspecified model.

3.3. Local stability of limit outcomes

At a stationary point, the likelihood ratio remains constant for any action that occurs with 
positive probability.

Definition 3 (Stationary). A point λ is stationary if either (i) ψ(a|ω, λ; p) = 0 or (ii) φ(a, λ; p̂) =
λ for a ∈ {�, h}.

The next Lemma characterizes the set of stationary points.

Lemma 2. The set of stationary points is {0, ∞}.
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A stationary point λ is locally stable if 〈λt 〉 converges to λ with positive probability when λ1
is in the neighborhood of λ.

Definition 4 (Local stability). Let λ ∈ [0, ∞) be a stationary point of 〈λt 〉. Then λ is locally 
stable if there exists an open ball N0 around 0 such that λ1 − λ ∈ N0 ⇒ P(λt → λ) > 0. A point 
λ = ∞ is locally stable if there exists an M such that λ1 > M ⇒ P(λt → ∞) > 0.

Local stability can be reframed in the context of the expected change in the log likelihood 
ratio. Suppose ω = H . Given likelihood ratio λ, the probability of action a is ψ(a|H, λ; p). 
Define

γ (p̂, λ) :=
∑

a∈{�,h}
ψ(a|H,λ;p) log

(
ψ(a|L,λ; p̂)

ψ(a|H,λ; p̂)

)
(5)

as the expected change in the log likelihood ratio. Then

Et [logλt+1] = logλt + γ (p̂, λt ).

Therefore, the sign of γ (p̂, λt ) determines whether Et [logλt+1] is greater or less than logλt .
Lemma 3 establishes the relationship between the local stability of λ ∈ {0, ∞} and γ (p̂, λ). 

Intuitively, 0 is locally stable when the expected change in the log likelihood ratio is negative 
at 0, and ∞ is locally stable when the expected change in the likelihood ratio is positive at ∞. 
Note γ (p̂, 0) and γ (p̂, ∞) are straightforward to calculate from the primitives of the model.

Lemma 3. Suppose ω = H . Given p̂ and γ (p̂, ·) defined in (5),

1. If γ (p̂, 0) < 0, then 0 is locally stable, while if γ (p̂, 0) > 0, then 0 is not locally stable.
2. If γ (p̂, ∞) > 0, then ∞ is locally stable, while if γ (p̂, ∞) < 0, then ∞ is not locally stable.
3. If γ (p̂, λ) = 0 for λ ∈ {0, ∞} and private beliefs are bounded, then λ is not locally stable.6

The condition for the local stability of 0 follows directly from Corollary C.1 of Smith and 
Sorensen (2000), which derives a criterion for the local stability of a nonlinear stochastic differ-
ence equation with state-dependent transitions. The condition for the local stability of ∞ follows 
from defining Markov process 〈xt 〉 as xt = 1/λt and noting that the analogue of (5), given x, is 
−γ (p̂, 1/x). Thus, 0 is a locally stable point of 〈xt 〉 when −γ (p̂, ∞) < 0. If 0 is a locally stable 
point of 〈xt 〉, then ∞ is a locally stable point of 〈λt 〉.

The conditions for when 0 and ∞ are not locally stable follow from the Law of Large Num-
bers (LLN), which is used to rule out convergence to the relevant stationary point. Consider the 
case of bounded private beliefs and suppose the likelihood ratio is in the h-cascade set. The 
probability of each action is constant, ψ(a|H, λ, p) = ψ(a|H, 0, p) for all λ ∈ J h. If the cas-
cade persists, then by the LLN, the share of each action almost surely converges to its expected 

6 If private beliefs are unbounded and γ (p̂, λ) = 0 for λ ∈ {0, ∞}, the stability of λ also depends on γ (p̂, ·) in a 
neighborhood of λ (for bounded beliefs, γ (p̂, ·) is constant in a neighborhood of λ). If γ (p̂, 0) = 0 and there exists an 
ε > 0 such that γ (p̂, λ) < 0 for λ ∈ (0, ε), then 0 is locally stable, while if there exists an ε > 0 such that γ (p̂, λ) ≥ 0 for 
λ ∈ (0, ε), then 0 is not locally stable. The condition for ∞ is analogous. These cases are non-generic, since Lemma 4
establishes that there is a unique p̂ ∈ [0, 1] for which γ (p̂, 0) = 0 and a unique p̂ ∈ [0, 1] for which γ (p̂, ∞) = 0. I do 
not consider them, as they significantly complicate the analysis without adding much economic insight. Note that it is 
straightforward to verify local stability of these cases for specific private belief distributions, and given the local stability 
properties, all subsequent results carry through.
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value, ψ(a|H, 0, p). Therefore, if the cascade persists, the limit of logλt/t almost surely con-
verges to a limit determined by the expected share of each action, which is exactly γ (p̂, 0). If 
γ (p̂, 0) > 0, then when a cascade persists,

lim
t→∞ logλt/t = γ (p̂,0) > 0.

But in order to remain inside the cascade set, it must be that

lim
t→∞ logλt/t < lim

t→∞ log
(
1 − b

)
/bt = 0,

a contradiction. Therefore, if γ (p̂, 0) > 0, then the likelihood ratio will almost surely leave the 
cascade set.

Next I characterize how γ (·, λ) varies with p̂, which determines how the local stability of 
λ ∈ {0, ∞} depends on p̂. Let

p̂1 :=
{

{p̂|γ (p̂,∞) = 0} if {p̂|γ (p̂,∞) = 0} �= ∅
0 if {p̂|γ (p̂,∞) = 0} = ∅ (6)

be the set of beliefs p̂ such that γ (·, ∞) is zero, and let

p̂2 := {p̂|γ (p̂,0) = 0} (7)

be the set of beliefs p̂ such that γ (·, 0) is zero. Then (6) and (7) define the cut-offs at which a 
stationary point switches from being locally stable to not stable and vice versa.

Given λ ∈ {0, ∞}, Lemma 4 uses the monotonicity of γ (·, λ) to establish that p̂1 and p̂2 are 
unique.7 Below the cutoff, λ is locally stable, and above the cutoff, λ is not locally stable. When 
p̂ = p, the likelihood ratio is a martingale, so 0 is locally stable and ∞ is not. This establishes 
that p̂1 < p and p̂2 > p. Although there is always a belief p̂ such that 0 is not locally stable (i.e. 
p̂2 < 1), it is possible that there is no p̂ such that ∞ is locally stable (i.e. p̂1 = 0 can occur). This 
latter possibility depends on the actual share of informed agents p and the informativeness of the 
actions of uninformed agents.

Lemma 4. Suppose ω = H . There exist unique cutoffs p̂1 ∈ [0, p) and p̂2 ∈ (p, 1) defined by (6)
and (7).

1. If p̂1 > 0 and p̂ ∈ [0, p̂1), then the set of locally stable points is {0, ∞}.
2. If p̂ ∈ (p̂1, p̂2), then 0 is the unique locally stable point.
3. If p̂ ∈ (p̂2, 1], then there are no locally stable points.
4. If p̂ = p̂1 and private beliefs are bounded, then 0 is the unique locally stable point, while if 

p̂ = p̂2 and private beliefs are bounded, then there are no locally stable points.

If p > p∗, then p̂1 > 0, and otherwise p̂1 = 0, where p∗ ∈ (0, 1) is defined by

p∗ := 1 −
log

(
1−FL(1/2)

1−FH (1/2)

)
FH (1/2)

[
log

(
FH (1/2)

FL(1/2)

)
+ log

(
1−FL(1/2)

1−FH (1/2)

)] . (8)

7 With a slight abuse of notation, I also use p̂1 and p̂2 to denote the unique cut-offs.
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Fig. 1. Model misspecification leads to local stability at the incorrect state or instability at the correct state.

Intuitively, if informed agents sufficiently overestimate the share of uninformed agents, then 
both 0 and ∞ are locally stable, whereas if agents sufficiently underestimate the share of unin-
formed agents, then no points are locally stable. If the belief about the share of informed agents 
is close to correct, the unique locally stable point is 0.

Beliefs p̂ influence the information that accumulates from each action, but not the probability 
of each action. When λ is close to 0, state H is perceived as very likely. If an informed agent 
chooses �, this is indicative of a strong signal in favor of state L, whereas if an informed agent 
chooses h, this is indicative of a weak signal in favor of state H . The informativeness of unin-
formed agents’ actions is independent of λt . Fixing λ close to 0, as p̂ increases, the perceived 
informativeness of contrary � actions increases and the perceived informativeness of support-
ing h actions decreases. The likelihood ratio jumps further away from 0 when an � action is 
observed, and moves a relatively smaller distance towards 0 when an h action is observed. Even-
tually, p̂ is high enough such that the likelihood ratio moves away from 0 in expectation and 0
is not locally stable. Fig. 1 plots γ (·, 0) and −γ (·, ∞) for an unbounded private belief distribu-
tion.

When p is low enough, then enough new information is generated by uninformed agents such 
that even in the extreme case in which informed agents believe all other agents are uninformed, 
and thus do not account for any repeated information, there is still enough new information 
to prevent the likelihood ratio from converging to the incorrect state. Mathematically, this is 
captured by the fact that when p < p∗, then γ (·, ∞) < 0 for all p̂ ∈ [0, 1], where p∗ is defined 
in (8) and depends on the relative informativeness of � and h actions from uninformed agents, 
1−FL(1/2)

H and 1−FL(1/2)
H , respectively.
1−F (1/2) 1−F (1/2)
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3.4. Global convergence to limit outcomes

The next Lemma establishes that, from any initial value λ0 ∈ (0, 1), the likelihood ratio con-
verges to each locally stable point with positive probability and almost surely does not converge 
to non-stable stationary points or non-stationary points.

Lemma 5. For any initial value λ0 ∈ (0, ∞), P(λt → λ) > 0 iff λ is a locally stable point of 
〈λt 〉.

When agents have an inaccurate model of inference, p̂ �= p, the likelihood ratio is no longer 
a martingale and it is not possible to use standard martingale methods to establish belief conver-
gence. I use the LLN and the LIL to establish global convergence to locally stable points.

Consider the case of bounded signals. The probability of each action is constant when the like-
lihood ratio is in the cascade set. If a cascade persists, then by the LLN, the share of each action 
almost surely converges to its expected value. Therefore, if the cascade persists, the likelihood 
ratio almost surely converges to a limit determined by the expected share of each action. When 
this limit lies inside the cascade set, then by the LIL, there is a positive measure of sample paths 
that converge to this limit without leaving the cascade. On this set of sample paths, the cascade 
does indeed persist. In contrast, when this limit lies outside the cascade set, then the likelihood 
ratio almost surely leaves the cascade set. Precisely the same criterion on γ determines whether 
the candidate limit lies inside the cascade set and whether a stationary point is locally stable. 
Therefore, whenever a stationary point is locally stable, the likelihood ratio converges to this 
point with positive probability, from any initial value.

The intuition is similar for the case of unbounded signals. I bound the likelihood ratio with a 
stochastic process that has state-independent transitions near the stable stationary point, and use 
the LIL to determine the limiting behavior of this second process.

3.5. Long run learning

This section presents the main result of the paper: a characterization of the learning dynamics 
in a misspecified model of inference. Several possible long-run learning outcomes may occur. 
Let incorrect learning denote the event where λt → ∞, correct learning denote the event where 
λt → 0, and non-stationary incomplete learning denote the event where λt does not converge or 
diverge.8 Learning is complete if correct learning occurs almost surely.

When agents attribute too few actions to informed agents, they overestimate the informative-
ness of actions supporting the more likely state and underestimate the informativeness of contrary 
actions, causing beliefs to quickly become entrenched. Both correct and incorrect learning arise. 
When agents attribute approximately the correct ratio of actions to informed agents, incorrect 
learning is no longer possible and learning is complete. Finally, when informed agents attribute 
too many actions to informed agents, they underestimate the informativeness of actions support-
ing the more likely state and overestimate the informativeness of contrary actions. Beliefs cannot 
converge, leading to non-stationary incomplete learning and temporary cascades on both actions. 
Theorem 1 formally characterizes the relationship between learning and model misspecification, 
using the cut-offs p̂1 and p̂2 derived in Lemma 4.

8 Stationary incomplete learning, or the event where λt → λ for some λ /∈ {0, ∞}, is another type of incomplete 
learning. This does not occur in the current model.
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Fig. 2. Long run learning outcomes.

Theorem 1. Suppose ω = H . Given cutoffs p̂1 ∈ [0, p) and p̂2 ∈ (p, 1) defined by (6) and (7),

1. If p̂1 > 0 and p̂ ∈ [0, p̂1), then λt → λ∞ almost surely, where λ∞ is a random variable with 
supp(λ∞) = {0, ∞}.

2. If p̂ ∈ (p̂1, p̂2), then λt → 0 almost surely.
3. If p̂ ∈ (p̂2, 1], then λt almost surely does not converge or diverge and P(λt /∈ J i.o.) = 1.
4. If private beliefs are bounded and p̂ = p̂1, then λt → 0 almost surely, while if p̂ = p̂2, then 

λt almost surely does not converge or diverge and P(λt /∈ J i.o.) = 1.9

Lemmas 4 and 5 established that when p̂ < p̂2, the likelihood ratio converges to a locally 
stable point with positive probability and does not converge to a non-stationary or non-locally 
stable point, and when p̂ > p̂2, the likelihood ratio does not converge to any point. Lemma 4 also 
characterized the stable points when p̂ < p̂2. The final step to establish Theorem 1 is to rule out 
incomplete learning when p̂ < p̂2. Consider the case of bounded signals. When a cascade per-
sists with positive probability, the probability that the likelihood ratio returns to any value outside 
the cascade set is strictly less than one. Therefore, a value outside the cascade set occurs infinitely 
often with probability zero – eventually, a cascade forms and persists. When a cascade persists 
and the likelihood ratio remains inside the cascade set, the LLN guarantees belief convergence.

Fig. 2 illustrates the three asymptotic learning outcomes outlined in Theorem 1 for a bounded 
and an unbounded private belief distribution. When p̂ lies above the blue line, non-stationary in-
complete learning occurs almost surely, whereas when p̂ lies below the black line, both incorrect 
and correct learning occur with positive probability. When p̂ lies between the two lines, learning 
is complete. The 45-degree line along which p̂ = p is contained in the complete learning region, 

9 See Footnote 6 for a discussion of the case of unbounded private beliefs when p̂ ∈ {p̂1, p̂2}.
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illustrating the insight that correct beliefs lead to complete learning. Fig. 2 also illustrates p∗. For 
the bounded private belief distribution, p∗ = 0.10; for any p > 0.10, there exists a belief p̂ > 0
such that incorrect learning occurs with positive probability.

Action convergence obtains for informed agents, in that they eventually choose the same ac-
tion, if and only if the likelihood ratio converges or diverges. Action convergence never obtains 
for uninformed agents, as their actions always depend on their private information. Define a sub-
sequence (atn) to represent the actions of informed agents, where tn = inf{t > tn−1|θt = I } and 
t0 = 0. Then the following Corollary is an immediate consequence of Theorem 1.

Corollary 1. Suppose ω = H . Given cutoffs p̂1 ∈ [0, p) and p̂2 ∈ (p, 1) defined by (6) and (7),

1. If p̂1 > 0 and p̂ ∈ [0, p̂1), then atn → a∞ almost surely, where a∞ is a random variable with 
supp(a∞) = {�, h}.

2. If p̂ ∈ (p̂1, p̂2), then atn → h almost surely.
3. If p̂ ∈ (p̂2, 1], then atn almost surely does not converge.
4. If private beliefs are bounded and p̂ = p̂1, then atn → h almost surely, while if p̂ = p̂2, then 

atn almost surely does not converge.

The asymptotic properties of learning determine whether the action choices of informed 
agents eventually converge to the optimal action. If complete learning obtains, then learning will 
be efficient in that informed agents will almost surely choose the optimal action all but finitely of-
ten. Otherwise, there is positive probability that learning will be inefficient and informed agents 
will choose the suboptimal action infinitely often.

Theorem 1 and Corollary 1 are robust to the addition of other information sources, such as an 
infinite stream of public signals or gurus (agents who know the state with probability 1).

4. Discussion

A misspecified model of information processing interferes with asymptotic learning. This 
insight has important policy implications. Suppose that a social planner can release additional 
public information. In a correctly specified model, this will affect the speed of learning, but will 
not impact asymptotic learning. However, in the face of model misspecification, the timing, fre-
quency and strength of public information will play a key role in determining whether asymptotic 
learning obtains. When p̂ < p̂1, immediate release of public information prevents beliefs from 
becoming entrenched on the incorrect state. A delayed public response requires stronger or more 
frequent public signals to overturn an incorrect herd. Interventions are required on a short-term 
basis: once a herd begins on the correct action, it is likely to persist on its own (although another 
short-term intervention may be necessary in the future). When p̂ ≥ p̂2, the important policy di-
mension is the frequency or strength of public information. As herds become more fragile, more 
frequent or precise public information is required to maintain a herd on the correct state. An 
intervention must be long-term; once an intervention ceases, the herd will break.

Experimental evidence provides support for both the presence of uninformed agents and a 
misspecified belief about their frequency. In a social learning experiment, Goeree et al. (2007)
find that new information continues to accumulate in cascades. Some agents still follow their 
private signal, despite the fact that all agents observe the history. In rational models, this off-the-
equilibrium-path action would be ignored. However, it seems plausible that subsequent agents 
recognize these off-the-equilibrium-path actions reveal an agent’s private signal, even if they are 
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unsure of the exact prevalence of such actions. Kubler and Weizsacker (2004) also find evidence 
consistent with a misspecified model of social learning. They conclude that subjects do learn from 
their predecessors, but are uncertain about the share of previous agents who also learned from 
their predecessors. Particularly, agents underestimate the share of previous agents who herded 
and overestimate the amount of new information contained in previous actions. Ziegelmeyer et 
al. (2010) examine the fragility of cascades in an experiment where an expert receives a more 
precise signal than other participants. The unique Nash equilibrium is for the expert to follow 
her signal, and observation of a contrary signal overturns a cascade. However, experts rarely 
overturn a cascade when equilibrium prescribes that they do so. As the length of the cascade in-
creases, experts become even less likely to follow their signal: they break 65% of cascades when 
there are two identical actions, but only 15% of cascades when there are five or more identical 
actions. Elicited beliefs evolve in a manner similar to the belief process that would arise if all 
agents followed their signals, and each action conveyed private information. In addition, off-the-
equilibrium-path play frequently occurs, and these non-equilibrium actions are informative.

Experimental evidence studying how people process correlated information also supports this 
form of model misspecification. Enke and Zimmermann (2015) show that subjects treat cor-
related information as independent when updating, and beliefs are too sensitive to correlated 
information sources.

This model leaves open several interesting questions. Individuals may differ in their depth of 
reasoning and their ability to combine different information sources – introducing heterogeneity 
into how agents process information would capture this. Allowing for partial observability of 
histories would also be a natural extension, while introducing payoff interdependencies would 
make the model applicable to election and financial market settings.

Appendix A

Proof of Lemma 1. Suppose λ ≥ (1 − b)/b. The strongest signal an agent can receive in favor 
of state H is b. This leads to posterior q(λ, b) = λb/(1 − b) ≥ 1 and an informed agent finds it 
optimal to choose a = �. Therefore, for any signal s ≥ b, an informed agent will choose action �. 
Similarly, if λ < (1 − b̄)/b̄, then an informed agent will choose action h for any signal s ≤ b̄. �
Proof of Lemma 2. At a stationary point λ, φ(a, λ) = λ for all a such that ψ(a|ω, λ; p) > 0. 
As p < 1 and uninformed agents are never in a cascade, ψ(a|ω, λ; p) > 0 for all a ∈ {�, h} and 
for all (ω, λ) ∈ {L, H } × [0, ∞]. Also, these actions are informative,

ψ(a|L,λ; p̂)

ψ(a|H,λ; p̂)
�= 1,

for all a ∈ {�, h} and λ ∈ (0, ∞). Therefore, {0, ∞} are the only two values that satisfy φ(a, λ) =
λ for all a ∈ {�, h}. �

The proof of Lemma 3 makes use of Corollary C.1 from Smith and Sorensen (2000), which 
is reproduced below in the context of this paper.

Lemma 6 (Condition for locally stable fixed point). Given a finite set A, and Borel measurable 
functions f : A ×R+ → R+ and ρ : A ×R+ → [0, 1] satisfying 

∑
a∈A ρ(a|x) = 1. Let x1 ∈ R. 

Then the process 〈xt 〉∞ where xt+1 = f (at , xt ) with probability ρ(at |xt ) for at ∈ A is a Markov 
t=0
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process. Let x̃ be a fixed point of x. Suppose f (a, ·) is continuously differentiable and ρ(a|·) is 
continuous at x̃ for all a ∈ A. If∑

a∈A

ρ(a|x̃) log |fx(a, x̃)| < 0 (9)

then x̃ is locally stable.

Proof. See Corollary C.1 in Smith and Sorensen (2000). �
Proof of Lemma 3. Suppose ω = H . Let (ϒ, F, P) denote the underlying probability space for 
〈at , λt 〉 and define

g(a,λ) = log
ψ(a|L,λ; p̂)

ψ(a|H,λ; p̂)
, (10)

and ρ(a|λ) = ψ(a|H, λ; p). Using this notation, logλt+1 = logλt + g(at , λt ), E[g(a, λ)] =
γ (p̂, λ) and γ (p̂, λ) = ρ(�|λ)g(�, λ) + ρ(h|λ)g(h, λ). The proof follows from Claims 1–3.

Claim 1. If γ (p̂, 0) < 0, then 0 is locally stable and if γ (p̂, ∞) > 0, then ∞ is locally stable.

Proof. Applying Lemma 6 to 〈λt 〉, A = {�, h}, ρ(a|λ) = ψ(a|H, λ; p), f (a, λ) = φ(a, λ; p̂)

and

φλ(a,λ; p̂) = ψ(a|L,λ; p̂)

ψ(a|H,λ; p̂)
+ λ

d

dλ

(
ψ(a|L,λ; p̂)

ψ(a|H,λ; p̂)

)
. (11)

Thus, at λ = 0, (9) is equal to γ (p̂, 0). This establishes that 0 is locally stable when γ (p̂, 0) < 0.
Define Markov process 〈�t 〉 with transitions

(h|ω,�;p) = pFω

(
�

1 + �

)
+ (1 − p)Fω(1/2) (12)

(�|ω,�;p) = 1 − (h|ω,�;p) (13)

�(a,�; p̂) = �

(
(a|H,�; p̂)

(a|L,�; p̂)

)
(14)

Note �t = 1/λt . The set of stationary points of 〈�t 〉 are {0, ∞}. Define

�(p̂,�) :=
∑

a∈{�,h}
(a|H,�;p) log

(
(a|H,�; p̂)

(a|L,�; p̂)

)
. (15)

Analogous to the preceding paragraph, 0 is locally stable when �(p̂, 0) < 0. Note �(p̂, 0) =
−γ (p̂, ∞) and � = 0 corresponds to λ = ∞. Therefore ∞ is a locally stable point of 〈λt 〉 when 
γ (p̂, ∞) > 0. �
Claim 2. If private beliefs are bounded and γ (p̂, 0) ≥ 0 (γ (p̂, ∞) ≤ 0), then for any λ0 ∈
(0, ∞), P(λt → 0) = 0 (P (λt → ∞) = 0). Thus, 0 (∞) is not locally stable.

Proof. Suppose private beliefs are bounded and γ (p̂, 0) ≥ 0. Let τ1 be the stopping time corre-
sponding to the period in which an h-cascade forms and never breaks,

τ1 = inf
{
t ≥ 1|λi ∈ J h ∀i ≥ t

}
,
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and let E = {υ ∈ ϒ |τ1(υ) < ∞} be the event in which an h-cascade forms in finite time and 
never breaks. If informed agents are in an h-cascade in period t , then g(at, λt ) = g(at , 0) and 
λt <

(
1 − b

)
/b. Then on any sample path υ ∈ E,

logλt (υ) = logλτ1(υ) +
t−1∑

i=τ1(υ)

g(ai(υ),0) < log
(
1 − b

)
/b ∀t > τ1(υ). (16)

Suppose γ (p̂, 0) > 0. In order for (16) to hold for υ , it must be the case that

lim sup
t→∞

1

t − τ1(υ)

t−1∑
i=τ1(υ)

g(ai(υ),0) ≤ 0. (17)

By the Strong Law of Large Numbers,

lim
t→∞

1

t

t∑
i=1

g(ai,0) = γ (p̂,0) > 0 a.s. (18)

Thus, (17) cannot hold for a set of sample paths that occur with positive probability and it must 
be that P(E) = 0.

Suppose γ (p̂, 0) = 0. Then on set E, 〈λt 〉 has the same limit properties as a zero mean random 
walk with increments g(at , 0). But

lim sup
t→∞

t∑
i=1

g(ai,0) = ∞ a.s. (19)

Thus, (16), cannot hold for a set of sample paths that occur with positive probability and it must 
be that P(E) = 0.

Thus, if γ (p̂, 0) ≥ 0, P(E) = 0 and every h-cascade breaks with probability 1. Therefore, 
P(λt → 0) = 0 from any λ0 ∈ (0, ∞). The proof for ∞ is analogous. �
Claim 3. If private beliefs are unbounded and γ (p̂, 0) > 0 (γ (p̂, ∞) < 0), then for any λ0 ∈
(0, ∞), P(λt → 0) = 0 (P (λt → ∞) = 0). Thus, 0 (∞) is not locally stable.

Proof. Suppose γ (p̂, 0) > 0 and private beliefs are unbounded. Let τ1 be the stopping time 
corresponding to the period in which the likelihood ratio is less than M for all future periods,

τ1 = inf {t ≥ 1|λi < M ∀i ≥ t} ,

and let E = {υ ∈ ϒ |τ1(υ) < ∞} be the event in which this stopping time is finite. Then on any 
sample path υ ∈ E,

logλt (υ) = logλτ1(υ) +
t−1∑

i=τ1(υ)

g(ai(υ), λi(υ)) < M ∀t > τ1(υ). (20)

In order for (20) to hold, it must be the case that for υ ∈ E,

lim sup
t→∞

1

t − τ1(υ)

t−1∑
g(ai(υ), λi(υ)) ≤ 0. (21)
i=τ1(υ)
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Next I construct a process on (ϒ, F, P) that converges to a positive limit almost surely. Define 
an i.i.d. sequence of random variables (α1, α2, . . .) with

αt =
{

� if (θt = U and st ≥ 1/2)

h if (θt = I ) or (θt = U and st < 1/2).
(22)

Then α corresponds to the action that is chosen if λ = 0, with P(α) = ρ(α|0). Given γ (p̂, 0) > 0, 
by continuity of ψ , there exists an M > 0 such that

ρ(�|0)g(�, x) + ρ(h|0)g(h, y) > 0, (23)

for all x, y ∈ [0, M]. Choose λ�, λh ∈ [0, M] such that

λ� = arg min
λ∈[0,M]g(�,λ) (24)

and

λh = arg min
λ∈[0,M]g(h,λ). (25)

Note E[g(αi, λαi
)] = ρ(�|0)g(�, λ�) + ρ(h|0)g(h, λh) > 0, where the inequality follows from 

λh, λ� ∈ [0, M] and (23). By the Strong Law of Large Numbers, for any finite j ≥ 1,

lim
t→∞

1

t − j

t∑
i=j

g(αi, λαi
) > 0 a.s. (26)

For λ ∈ [0, M], g(h, λ) ≥ g(h, λh), g(�, λ) ≥ g(�, λ�) and g(�, λ) > g(h, λh), where the first 
two inequalities follow from the definition of λh, λ�, and the third follows from g(�, λ) > 1
and g(h, λh) < 1. Also, (at , αt ) �= (h, �) by definition. Therefore, if λt ≤ M , then g(at , λt ) ≥
g(αt , λαt ). Therefore, for υ ∈ E,

t∑
i=τ1(υ)

g(ai(υ), λi(υ)) ≥
t∑

i=τ1(υ)

g(αi(υ), λαi(υ)) (27)

for all t > τ1(υ).
Combining (21) and (27), for υ ∈ E,

0 ≥ lim sup
t→∞

1

t − τ1(υ)

t−1∑
i=τ1(υ)

g(αi(υ), λαi(υ)). (28)

But given (26), inequality (28) is satisfied with probability 0. Therefore, P(E) = 0. Therefore, 
almost surely the likelihood ratio exceeds M infinitely often and P(λt → 0) = 0 from any λ0 ∈
(0, ∞). The proof for ∞ is analogous. �
Proof of Lemma 4. Suppose ω = H . The proof follows from Claims 4–7.
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Claim 4. For a ∈ {�, h},

1. If λ > 1, then d
dp̂

(
ψ(a|L,λ;p̂)

ψ(a|H,λ;p̂)

)
< 0.

2. If λ < 1, then d
dp̂

(
ψ(a|L,λ;p̂)

ψ(a|H,λ;p̂)

)
> 0.

3. If λ = 1, then d
dp̂

(
ψ(a|L,λ;p̂)

ψ(a|H,λ;p̂)

)
= 0.

Proof. Suppose a = h. Then

d

dp̂

(
ψ(h|L,λ; p̂)

ψ(h|H,λ; p̂)

)
= FL(1/(λ + 1))FH (1/2) − FL(1/2)FH (1/(λ + 1))[

p̂FH (1/(λ + 1)) + (1 − p̂)FH (1/2)
]2

(29)

Given FL/FH is strictly increasing on supp(F ) (Smith and Sorensen, 2000, 2008), and 1/2 ∈
supp(F ), if λ > 1, then FL(1/(λ+1))

FH (1/(λ+1))
<

FL(1/2)

FH (1/2)
, if λ < 1, then FL(1/(λ+1))

FH (1/(λ+1))
>

FL(1/2)

FH (1/2)
and if 

λ = 1, then the numerator is 0, which establishes Claim 4 for a = h. The proof of a = � is 
analogous. �
Claim 5 (Local stability of 0). There exists a p̂2 ∈ (p, 1) such that 0 is locally stable for p̂ ∈
[0, p̂2) and 0 is not locally stable for p̂ ∈ (p̂2, 1]. If private beliefs are bounded, 0 is not locally 
stable for p̂ = p̂2.

Proof. By Lemma 3, 0 is locally stable if γ (p̂, 0) < 0 and 0 is not locally stable if γ (p̂, 0) > 0. 
If private beliefs are bounded, 0 is not locally stable if γ (p̂, 0) = 0. By (5),

γ (p̂,0) =
∑

a∈{�,h}
ψ(a|H,0;p) log

(
ψ(a|L,0; p̂)

ψ(a|H,0; p̂)

)

= (1 − p)(1 − FH (1/2)) log

(
1 − FL(1/2)

1 − FH (1/2)

)

+
(
p + (1 − p)FH (1/2)

)
log

(
p̂ + (1 − p̂)FL(1/2)

p̂ + (1 − p̂)FH (1/2)

)
(30)

Substituting p̂ = 1 into (30),

γ (1,0) = (1 − p)(1 − FH (1/2)) log

(
1 − FL(1/2)

1 − FH (1/2)

)
> 0 (31)

where 1−FL(1/2)

1−FH (1/2)
> 1 follows from FL(1/2) < FH (1/2). Substituting p̂ = p into (30),

γ (p,0) =
∑

a∈{�,h}
ψ(a|H,0;p) log

(
ψ(a|L,0;p)

ψ(a|H,0;p)

)

< log

⎛
⎝ ∑

a∈{�,h}
ψ(a|H,0;p)

(
ψ(a|L,0;p)

ψ(a|H,0;p)

)⎞
⎠

= log

⎛
⎝ ∑

ψ(a|L,0;p)

⎞
⎠ = 0 (32)
a∈{�,h}
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where the second line follows from the weighted arithmetic mean-geometric mean inequality. 
Finally,

dγ (p̂,0)

dp̂
=

(
p + (1 − p)FH (1/2)

)(
ψ(h|H,0; p̂)

ψ(h|L,0; p̂)

)
d

dp̂

(
ψ(h|L,0; p̂)

ψ(h|H,0; p̂)

)
> 0 (33)

where the inequality follows from Claim 4.
Therefore, γ (p̂, 0) is increasing in p̂, γ (p, 0) < 0 and γ (1, 0) > 0. By continuity, there exists 

a unique p̂2 ∈ (p, 1) such that γ (p̂2, 0) = 0. For p̂ < p̂2, γ (p̂, 0) < 0 and 0 is locally stable, 
while for p̂ > p̂2, γ (p̂, 0) > 0 and 0 is not locally stable. For p̂ = p̂2, γ (p̂, 0) = 0; if private 
beliefs are bounded, 0 is not locally stable. �
Claim 6 (Local stability of ∞).

1. If p > p∗, where p∗ is defined in (8), there exists a p̂1 ∈ (0, p) such that ∞ is locally stable 
for p̂ ∈ [0, p̂1) and is not locally stable for p̂ ∈ (p̂1, 1]. If private beliefs are bounded, ∞ is 
not locally stable for p̂ = p̂1.

2. If p < p∗, then ∞ is not locally stable for all p̂ ∈ [0, 1].
3. If p = p∗, then ∞ is not locally stable for all p̂ ∈ (0, 1], and if private beliefs are bounded, 

∞ is not locally stable for p̂ = 0.

Proof. Recall the Markov process 〈�t 〉 defined in (12)–(14), where �t = 1/λt . At �t = 0,

�(p̂,0) =
((

p + (1 − p)(1 − FH (1/2)
))

log

(
p̂ + (1 − p̂)(1 − FH (1/2))

p̂ + (1 − p̂)(1 − FL(1/2))

)

+(1 − p)FH (1/2) log

(
FH (1/2)

FL(1/2)

)
(34)

where � is the stability criterion of 〈�t 〉 defined in (15). Substituting p̂ = 0 into (34),

�(0,0) =
(

1 − (1 − p)FH (1/2)
)

log

(
1 − FH (1/2)

1 − FL(1/2)

)

+ (1 − p)FH (1/2) log

(
FH (1/2)

FL(1/2)

)
(35)

which is less than 0 when

p > 1 −
log

(
1−FL(1/2)

1−FH (1/2)

)
FH (1/2)

[
log

(
FH (1/2)

FL(1/2)

)
+ log

(
1−FL(1/2)

1−FH (1/2)

)] := p∗. (36)

Substituting p̂ = p into (34),

�(p,0) =
∑

a∈{�,h}
(a|H,0;p) log

(
(a|H,0;p)

(a|L,0;p)

)

= −
∑

a∈{�,h}
(a|H,0;p) log

(
(a|L,0;p)

(a|H,0;p)

)

> − log

⎛
⎝ ∑

a∈{�,h}
(a|H,0;p)

(a|L,0;p)

(a|H,0;p)

⎞
⎠

= 0



J.A. Bohren / Journal of Economic Theory 163 (2016) 222–247 241
where the third line follows from the weighted arithmetic mean-geometric mean inequality. Fi-
nally,

d�(p̂,0)

dp̂
= (�|H,0;p)

(�|L,0; p̂)

(�|H,0; p̂)

d

dp̂

(
(�|H,0; p̂)

(�|L,0; p̂)

)
> 0 (37)

where the inequality follows from Claim 4 and (a|ω, 0; p̂) = ψ(a|ω, ∞; p̂).
Therefore, �(p̂, 0) is increasing in p̂ and �(p, 0) > 0.

Case 1. When p > p∗, �(0, 0) < 0. By continuity, when p > p∗, there exists a unique p̂1 ∈
(0, p) such that �(p̂1, 0) = 0. For p̂ < p̂1, �(p̂, 0) < 0 and 0 is a locally stable point of 
〈�t 〉, while for p̂ > p̂1, �(p̂, 0) > 0 and 0 is not locally stable. For p̂ = p̂1, �(p̂, 0) = 0; 
if private beliefs are bounded, 0 is not locally stable.

Case 2. When p < p∗, then �(p̂, 0) > 0 for all p̂ ∈ [0, 1] and 0 is not locally stable for any p̂.
Case 3. When p = p∗, then �(0, 0) = 0 and p̂1 = 0. For p̂ > 0, �(p̂, 0) > 0 and 0 is not a 

locally stable point of 〈�t 〉. For p̂ = 0, �(p̂, 0) = 0; if private beliefs are bounded, 0 is 
not locally stable.

For any p̂, if 0 is a locally stable point of 〈�t 〉, then ∞ is a locally stable point of 〈λt 〉. �
Claim 7. p̂1 < p̂2.

Proof. This follows immediately from the fact that p̂1 < p and p̂2 > p. �
Proof of Lemma 5. Suppose ω = H . Let (ϒ, F, P) denote the underlying probability space for 
〈at , λt 〉 and define

g(a,λ) = log
ψ(a|L,λ; p̂)

ψ(a|H,λ; p̂)
, (38)

and ρ(a|λ) = ψ(a|H, λ; p). Using this notation, logλt+1 = logλt + g(at , λt ) and γ (p̂, λ) =
ρ(�|λ)g(�, λ) + ρ(h|λ)g(h, λ).

Let (α1, α2, . . .) be an i.i.d. sequence of random variables with

αt =
{

� if {θt = U and st ≥ 1/2}
h if {θt = I } or {θt = U and st < 1/2}. (39)

Then αt corresponds to the action that is chosen if there is an h-cascade in period t and P(α) =
ρ(α|0). Note E[g(α, 0)] = γ (p̂, 0) and let σ 2 := Var(g(α, 0)). Define a sequence of random 
variables (X1, X2, . . .) where

Xt = g(αt ,0) − γ (p̂,0)

σ
. (40)

Then (X1, X2, . . .) are i.i.d. random variables with mean 0 and variance 1. By the Law of the 
Iterated Logarithm (LIL) (Hartman and Wintner, 1941),

lim sup

∑t
i=1 Xi√ = 1 a.s. (41)
t→∞ 2t log log t
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Thus, for all ε > 0,

P

[
1

t

t∑
i=1

g(αi,0) ≥ γ (p̂,0) + (1 + ε)βt i.o.

]
= 0 (42)

where

βt :=
√

2σ 2 log log t

t
. (43)

The proof of Lemma 5 follows from Claims 8–10, which establish that if λ is a locally stable 
point of 〈λt 〉, then P(λt → λ) > 0 from any initial value λ1 ∈ (0, ∞), Claim 11, which rules out 
convergence to non-stationary points and Claims 2–3, which establish when stationary points are 
not globally stable.

Claim 8. Let

E =
{

υ ∈ ϒ

∣∣∣∣ 1

t

t∑
i=1

g(αi(υ),0) < γ (p̂,0) + (1 + ε)βt for all t ≥ 3, ε > 0

}
(44)

be the event that 1
t

∑t
i=1 g(αi, 0) never exceeds γ (p̂, 0) + (1 + ε)βt for all t ≥ 3 and ε > 0. Then 

there exists a δ > 0 such that P(E) ≥ δ.

Proof. Let St = ∑t
i=1 g(αi, 0). Fixing ε > 0, define the number of times that the Law of the 

Iterated Logarithm bound is exceeded starting at time t ,

Rt =
∞∑
i=t

I {Si > iγ (p̂,0) + (1 + ε)iβi}

where I is the indicator function. From (42), P(R3 < ∞) = 1. Let τ be the stopping time corre-
sponding to the last time that St exceeds this boundary,

τ = inf{T ≥ 3 | St < tγ (p̂,0) + (1 + ε)tβt for all t ≥ T }.
Then Rτ = 0 by definition and P(τ < ∞) = 1 by (42). For any t < ∞, the probability of no 
crossings during i ∈ {3, . . . , t} is strictly positive, P((R3 − Rt) = 0) > 0. Thus, for any υ with 
3 < τ(υ) < ∞, there is a corresponding sample path υ ′ such that St (υ) = St (υ

′) for t ≥ τ and 
R3(υ

′) = 0. Therefore, P(R3 = 0) > 0 and there exists a δ > 0 such that P(E) ≥ δ. �
Claim 9. If private beliefs are bounded and λ ∈ {0, ∞} is locally stable, then P(λt → λ) > 0
from any initial value λ1 ∈ (0, ∞).

Proof. Suppose 0 is locally stable and private beliefs are bounded. Fix λ1 ∈ (0, ∞) and let η − 1
be the number of consecutive h actions required to start a cascade (η is deterministic and finite).10

Let En be the event that an h-cascade begins in period η and persists at least until period η + n,

En = {λt ∈ J h ∀t ∈ {η, . . . , η + n}} (45)

10 The likelihood ratio in period t is based on actions a1, . . . , at−1. Thus, η−1 consecutive h actions will start a cascade 
in period η.
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where E0 = {λη ∈ J h} is the event that a cascade begins in period η and E∞ = {λt ∈ J h ∀t ≥ η}
is the event that a cascade begins in period η and never breaks.

Suppose sample path υ ∈ E0. If υ ∈ En, the likelihood ratio is equal to

logλη+n(υ) = logλη(υ) +
η+n−1∑

i=η

g(αi(υ),0), (46)

since αi coincides with ai in an h-cascade. Thus, a sufficient condition for υ ∈ En is

t−1∑
i=η

g(αi(υ),0) < 0 ∀t ∈ {η + 1, . . . , η + n}. (47)

From Claim 8, we know that

P

⎛
⎝ t−1∑

i=η

g(αi,0) < (t − η)(γ (p̂,0) + (1 + ε)βt−η) ∀t > η + 2, ε > 0

⎞
⎠ ≥ δ (48)

where βt is defined in (43). Given 0 is locally stable, by Lemma 3, γ (p̂, 0) < 0. Given βt → 0, 
γ (p̂, 0) + (1 + ε)βt is eventually negative for any ε > 0. Fix ε > 0 and let k + 1 be the number 
of periods required for the LIL bound to be negative,

k + 1 = inf
{
t ≥ 3|γ (p̂,0) + (1 + ε)βt < 0

}
(49)

(k is deterministic and finite). Then γ (p̂, 0) + (1 + ε)βt < 0 for all t ≥ k + 1.
Conditional on an h-cascade beginning in period η, the probability that the likelihood ratio 

remains in the h-cascade set through period η + k is

P (Ek|E0) ≥ P

⎛
⎝ t−1∑

i=η

g(αi,0) < 0 ∀t ∈ {η + 1, . . . , η + k}
⎞
⎠ > ρ(h|0)k > 0 (50)

where the first inequality follows from (47) and the second inequality follows from the probabil-
ity of k consecutive h actions. The probability of the h-cascade never breaking is

P(E∞|E0) ≥ P

⎛
⎝ t−1∑

i=η

g(αi,0) < 0 ∀t > η

⎞
⎠

> P

⎛
⎝ t−1∑

i=η

g(αi,0) < min{0, (t − η)(γ (p̂,0) + (1 − ε)βt−η)} ∀t > η

⎞
⎠

≥ δρ(h|0)k

where the second inequality follows from the LIL bound, which is less than 0 starting in period 
η + k + 1, and the third inequality follows from Claim 8 and (50). Finally, the probability an 
h-cascade forms in period η is bounded below by the probability of η−1 consecutive uninformed 
agents who all choose h,

P(E0) ≥ (1 − p)η−1FH (1/2)η−1 > 0. (51)
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Therefore, the probability that an h-cascade forms in period η and never breaks is strictly positive 
since

P(E∞) > δ(1 − p)η−1FH (1/2)η−1ρ(h|0)k > 0. (52)

As before, let random variable τ1 be the stopping time corresponding to the first period in 
which an h-cascade forms and never breaks,

τ1 = inf
{
t ≥ 1|λi ∈ J h ∀i ≥ t

}
. (53)

Then the probability that an h-cascade forms in finite time and never breaks is strictly positive 
since

P(τ1 < ∞) > P (E∞) > 0. (54)

For all υ such that τ1(υ) < ∞,

logλt (υ) < log

(
1 − b̄

b̄

)
+

t−1∑
i=τ1(υ)

g(αi(υ),0), (55)

for all t > τ1(υ). Also,

lim
t→∞

t−1∑
i=τ1(υ)

g(αi(υ),0) = −∞ a.s., (56)

where the convergence follows from E[g(αt , 0)] = γ (p̂, 0) < 0. Therefore, for almost all sample 
paths υ such that τ1(υ) < ∞,

lim
t→∞ logλt (υ) = −∞. (57)

Therefore, P(λt → 0) = P(τ1 < ∞) > 0. The proof for ∞ is analogous. �
Claim 10. If private beliefs are unbounded and λ ∈ {0, ∞} is locally stable, then P(λt → λ) > 0
from any initial value λ1 ∈ (0, ∞).

Proof. Suppose 0 is locally stable and private beliefs are unbounded. By Lemma 3, γ (p̂, 0) =
ρ(�|0)g(�, 0) + ρ(h|0)g(h, 0) < 0. First I construct a process on (ϒ, F, P) that converges to a 
negative limit almost surely. By continuity of ψ , there exists an M > 0 such that

ρ(�|M)g(�, x) + ρ(h|M)g(h, y) < 0, (58)

for all x, y ∈ [0, M]. Choose λ�, λh ∈ [0, M] such that

λ� = arg max
λ∈[0,M]

g(�,λ) (59)

and

λh = arg max
λ∈[0,M]

g(h,λ). (60)

Define an i.i.d. sequence of random variables (ν1, ν2, . . .) with

νt =
{

� if (θt = I and st ≥ s∗(M)) or (θt = U and st ≥ 1/2)

h if (θt = I and st < s∗(M)) or (θt = U and st < 1/2).
(61)

Then ν corresponds to the action that is chosen if λ = M , with P(ν) = ρ(ν|M).
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Note E[g(νi, λνi
)] = ρ(�|M)g(�, λ�) + ρ(h|M)g(h, λh) < 0, where the inequality follows 

from λh, λ� ∈ [0, M] and (58). By the Strong Law of Large Numbers, for any finite j ≥ 1,

lim
t→∞

1

t − j

t∑
i=j

g(νi, λνi
) < 0 a.s. (62)

Therefore, using similar logic to Claim 9, for any finite j ≥ 1,

P

⎛
⎝ t−1∑

i=j

g(νi, λνi
) < 0 ∀t > j

⎞
⎠ > 0. (63)

For λ ∈ [0, M], g(h, λ) ≤ g(h, λh), g(�, λ) ≤ g(�, λ�) and g(h, λ) < g(�, λ�), where the first 
two inequalities follow from the definition of λh, λ�, and the third follows from g(�, λ�) > 1
and g(h, λ) < 1. Also, when λ ∈ [0, M], (a, ν) �= (�, h) by definition. Therefore, if λt ≤ M , then 
g(at , λt ) ≤ g(νt , λνt ).

Similar to Claim 9 with J h replaced by [0, M], define η as the number of consecutive h
actions required for the likelihood ratio to fall below M and let

En = {λt ∈ [0,M] ∀t ∈ {η, . . . , η + n}}. (64)

Thus, if υ ∈ E0 and

t−1∑
i=η

g(νi(υ), λνi(υ)) < 0 ∀t ∈ {η + 1, . . . , η + n}. (65)

then υ ∈ En. By (63), (65) holds on a set of sample paths with positive measure for any n. This 
establishes that P(E∞|E0) > 0. Finally, as in Claim 9, P(E0) > 0. Therefore, the probability 
that the likelihood ratio falls below M in period η and never again exceeds M is strictly positive, 
P(E∞) > 0. By similar logic to Claim 9, on this set of sample paths, λt → 0 almost surely. 
Therefore, P(λt → 0) > 0. The proof for ∞ is analogous. �
Claim 11. If λ is not a stationary point of 〈λt 〉, then P(λt → λ) = 0.

Proof. Theorem B.1 in Smith and Sorensen (2000) establishes that a martingale cannot con-
verge to a non-stationary point; the same result applies to the Markov process 〈λt 〉. Therefore, if 
P(λt → λ) > 0, then λ ∈ {0,∞}. �
Proof of Theorem 1. Suppose ω = H . The proof follows from Claims 12–14.

Claim 12. If p > p∗ and p̂ < p̂1, then λt → λ∞ almost surely, where λ∞ is a random variable 
with supp(λ∞) = {0, ∞}.

Proof. Suppose p > p∗ and p̂ < p̂1. By Lemma 4, the set of locally stable points is {0, ∞} and 
by Lemma 5, P(λt → λ) > 0 iff λ ∈ {0, ∞}. Thus, it is necessary to rule out incomplete learning 
to show that there exists an λ∞ with supp(λ∞) = {0, ∞} such that λt → λ∞ almost surely.

Suppose private beliefs are bounded. Let τ3 = inf{t ≥ 1|λt ∈ J } be the stopping time corre-
sponding to the first time that the likelihood ratio enters the cascade set and let τ4 = inf{t > τ3|
λt /∈ J } be the stopping time corresponding to the first time that the likelihood ratio leaves 
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the cascade set. For any λ1, P(τ3 < ∞) = 1 and by Lemma 5, P(τ4 < ∞) < 1 since the 
cascade persists with positive probability. The same holds for subsequent cascades. Therefore, 
P(λt /∈ J i.o.) = 0 and the likelihood ratio eventually remains in the cascade set almost surely. 
Lemma 5 established belief convergence on any sample path that remains in the cascade set. 
Thus, there exists a random variable λ∞ with supp(λ∞) = {0, ∞} such that λt → λ∞ almost 
surely.

Suppose private beliefs are unbounded. Similar logic establishes that for any (λ1, λ2) ⊂
(0, ∞), P(λt ∈ (λ1, λ2) i.o.) = 0. Therefore, there exists a τ such that P(λt ∈ [0, λ1] ∪
[λ2, ∞] ∀t > τ) = 1. Choosing λ1 small enough and λ2 large enough can be used to establish 
convergence. �
Claim 13. If p̂ ∈ (p̂1, p̂2), then λt → 0 almost surely.

Proof. Similar logic to Claim 12, substituting J h for J in the case of bounded private beliefs 
and setting λ2 = ∞ in the case of unbounded private beliefs, establishes the claim. �
Claim 14. If p̂ > p̂2, then λt almost surely does not converge or diverge.

Proof. When p̂ > p̂2, the likelihood ratio almost surely doesn’t converge to 0 or diverge to ∞. 
By Lemma 5, these are the only two candidate limit points. Therefore, learning is incomplete.

P(λt /∈ J i.o.) = 1 follows immediately from Claim 2 for bounded private beliefs, which 
establishes when a cascade breaks with probability 1, and from Claim 14 for unbounded private 
beliefs, which establishes that the likelihood ratio almost surely does not enter the cascade set. 
When private beliefs are bounded, Claim 13 also holds for p̂ = p̂1 and Claim 14 also holds for 
p̂ = p̂2. �
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