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Abstract

A Seller has a single unit of a good to sell to a group of bidders. The good is
costly to produce, and the bidders have a pure common value that may be higher
or lower than the production cost. The value is drawn from a prior distribution
that is commonly known. The Seller does not know the bidders’ beliefs about
the value and evaluates each auction mechanism according to the lowest expected
profit across all Bayes Nash equilibria and across all common-prior information
structures that are consistent with the known value distribution. We construct
an optimal auction for such a Seller. The optimal auction has a relatively simple
structure, in which bidders send one-dimensional bids, the aggregate allocation is a
function of the aggregate bid, and individual allocations are proportional to bids.
The accompanying transfers solve a system of differential equations that aligns the
Seller’s profit with the bidders’ local incentives. We report a number of additional
properties of the maxmin mechanisms, including what happens as the number of
bidders grows large and robustness with respect to the prior on the value.
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1 Introduction

1.1 Background and motivation

We study the design of profit-maximizing auctions when the bidders have a pure common
value for a good being sold, but partial and differential information about that value. The
common value model is a natural approximation for many real world markets, such as
those for natural resources or financial assets, where to a first order all bidders have the
same preferences about the market value of the resource or the future cash flows of the
asset.

Common-value auctions have been studied almost since the beginning of auction the-
ory. And yet relatively little is known about optimal auctions. When bidders’ signals are
independent and one-dimensional, Bulow and Klemperer (1996) have argued that English-
like auctions are optimal under a condition that signals associated with higher expected
values are not too precise. In the perhaps more natural case where signals are correlated
through the common value, such as in the mineral rights model, McAfee, McMillan, and
Reny (1989) and McAfee and Reny (1992) construct mechanisms that extract all of the
surplus by having the bidders bet on other bidders’ information. While the full-surplus
extracting auctions are theoretically interesting, there are a number of reasons why they
may not be practically useful, including that the designer may not know exactly how
information is correlated, and the optimal auction may be too complicated for bidders to
use.

This discussion points to some conceptual issues in optimal auction design. First, the
optimal auction varies widely with the model of bidders’ information, e.g., whether and
how signals are correlated. Second, it is hard to determine, either through measurement
or introspection, which model of information is empirically relevant. Third, relatively
little is known about how optimal auctions would fare if the information model is mis-
specified. Note that these issues also arise in the private-value setting, but at least there
the independent private value model has been broadly accepted as a useful benchmark.
In common-value auctions, there is no comparably canonical model.

To address these issues, we model a Seller who knows the distribution of the common
value, but faces ambiguity about the information that bidders have about the value.
The latter is modeled as a common-prior information structure. The Seller is concerned
about model misspecification, and evaluates each auction design according to its lowest
expected profit across all information structures and Bayes Nash equilibria. We refer to
this minimum as the auction’s profit guarantee. The problem is to identify the auction
that provides the largest such profit guarantee.

1.2 Main results

Our main result is to explicitly construct an auction mechanism that maximizes the profit
guarantee. When the number of bidders is large, the guarantee is approximately the entire
ex ante gains from trade, i.e., the expectation of the value under the prior minus the cost of
production (or zero if the expected value is less than the cost). While we do not formalize
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this idea, the guarantee seems to be a substantial share of surplus even when the number
of bidders is small. For example, when there are two bidders and the value is standard
uniform and there is zero cost of production, the mechanism we construct guarantees the
Seller at least 56 percent of the total surplus as profit.

Our solution actually consists of both a maxmin mechanism and a minmax informa-
tion structure. The mechanism provides the optimal profit guarantee, and the information
structure certifies that this guarantee is unimprovable since no mechanism can do better
at the minmax information structure. In our analysis, we first derive the minmax infor-
mation structure using the heuristic that the Seller should be indifferent between a wide
range of mechanisms. The mechanism is then constructed to be an optimal direct mecha-
nism on the minmax information structure with the additional feature that profit must be
weakly higher in any equilibrium on any information structure. Thus, the messages in the
maxmin mechanism are “normalized” to be signals in the minmax information structure.
We refer to this structure as the double revelation principle: The maxmin mechanism is a
profit-maximizing direct mechanism on the minmax information structure, and the min-
max information structure is a profit-minimizing correlated equilibrium on the maxmin
mechanism. The existence of a solution of this form is a non-trivial result, and it does
not follow from the standard revelation arguments.

The requirement that the profit be minimized at the minmax information structure re-
duces to a pair of differential equations and an integral equation involving the mechanism’s
allocation and transfer rules. The first differential equation pins down the divergence of
the allocation rule, i.e., the sum of the partial derivatives of each bidder’s allocation prob-
ability with respect to their own message. We refer to this as the aggregate allocation
sensitivity. The solution to this equation has the following form: The aggregate proba-
bility of the good being sold is a function of the aggregate message, i.e., the sum of the
messages, and conditional on this aggregate supply, the good is allocated to each bidder
with a likelihood that is proportional to their message.

In benchmark cases, the aggregate supply is linearly increasing in the aggregate mes-
sage until it hits 1 and stays constant as 1 thereafter. An interpretation is that messages
are “demands” for a quantity of the good. The demands are completely filled when the
aggregate demand is less than the available supply, and otherwise the good is rationed in
a proportional manner.

The second differential equation links ex post profit (which depends on the sum of
the transfers) to the bidders’ local incentives (which depends on the divergence of the
allocation rule and the divergence of the transfer rule). We refer to this relationship
as profit-incentive alignment (PIA). The maxmin transfer rule solves PIA, subject to
an additional integral equation that is necessary for the transfers to be bounded when
messages are large. This transversality condition rules out pathological solutions for which
equilibria do not exist on any information structure.

One can view our solution as a saddle point of a zero-sum game between the Seller,
who chooses the mechanism to maximize profit, and adversarial Nature, who chooses the
information structure to minimize profit. A subtlety in modeling and solving this game
is that for a fixed mechanism and information structure, there can be more than one
equilibrium with different levels of profit. One might therefore be concerned that the
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solution depends on the equilibrium selection rule. For the solution we identify, however,
neither the Seller nor Nature can move profit in their preferred direction by changing
the mechanism or information structure, respectively, even if the deviating party can also
select the equilibrium. In our view, this is a surprising and normatively desirable feature
of the solution.

We highlight this result by defining and using a new solution concept that we term
a strong maxmin solution, which builds in the requirement that the profit guarantee
must not depend on how we select an equilibrium. Theorem 1 shows by construction
that a strong maxmin exists. Theorem 3 goes on to show that the profit guarantee for a
strong maxmin solution is unique among solutions that are sufficiently well-behaved. After
Theorem 3, we relate our solution back to the original maxmin motivation by exhibiting a
collection of maxmin mechanism design and minmax information design problems with a
wide range of equilibrium selection rules that are all solved by the strong maxmin solution.

As a last topic, we consider the behavior of maxmin auctions as the number of bidders
grows large and the value distribution is held fixed. As the number of bidders tends to
infinity, the optimal profit guarantee converges to the ex ante gains from trade. This
generalizes the result of Du (2018) that shows the analogous result when there is com-
mon knowledge of non-negative gains from trade. We show that the optimal rate for
this convergence is O(1/

√
N), and we show that the limit is attained even with efficient

mechanisms. Finally, we show that the optimal profit guarantee converges to the ex ante
gains from trade even if the prior is misspecified. Thus, whether the prior is correct is
immaterial when the number of bidders is large.

The maxmin modeling approach allows us to identify new mechanisms with desirable
theoretical properties, namely the sharp and unimprovable lower bound on profit, which
holds uniformly across information structures and equilibria. A trade-off is the conceptual
tension between the extreme ambiguity aversion of the Seller and the common knowledge
among the agents with respect to the information structure. In particular, why does the
Seller not simply ask the agents to report the information structure? In our view, the
information structure of the agents is an as-if description of behavior, which we hope is a
reasonable approximation. But we do not want to interpret it as something explicit that
could be easily communicated by the agents to the Seller. In other words, we think the
present modeling approach respects real-world limitations on what agents can articulate
and communicate about their beliefs. The maxmin mechanism has a low-dimensional
bidding interface and does not require the agents to report those beliefs, nor does it
require the Seller to input a model of beliefs in order to compute the maxmin mechanism.
That being said, the assumption of large ambiguity is as extreme as the assumption that
the Seller knows the information structure exactly. We view it as a benchmark and a
starting point for future work on informationally-robust optimal auctions. We return to
this point in the conclusion of the paper.

1.3 Related literature

This paper lies at the intersection of the literatures on mechanism design and information
design. We build on the seminal paper of Myerson (1981) on optimal auction design, and
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also subsequent work by Bulow and Klemperer (1996). Revenue equivalence arguments
feature prominently in our analysis of optimal mechanisms on the minmax type space,
and the revelation principle is a key idea behind the construction of the maxmin mecha-
nism. We also draw heavily from the literature on robust predictions and specifically the
incomplete information solution concept Bayes correlated equilibrium (BCE) (Bergemann
and Morris, 2013, 2016). This is used in deriving the aforementioned differential equations
that motivate the maxmin mechanism.

The most closely related papers are Du (2018) and Bergemann, Brooks, and Morris
(2016). Du (2018) solves our maxmin auction design problem in the limit as the number of
bidders goes to infinity and when the production cost is zero.1 Specifically, Du constructs
a sequence of mechanisms, one for each number of bidders, and associated lower bounds
on profit that converge to the expected surplus as the number of bidders tends to infinity.
The proof of the result uses duality arguments that are related to the ones we employ.
While the mechanisms from Du (2018) are optimal in the many-bidder limit, they do
not achieve the optimal profit guarantee when the number of bidders is finite and more
than one. In contrast, Bergemann, Brooks, and Morris (2016) solves our maxmin auction
design problem for the special case where there are exactly two bidders and two possible
values, one for which the gains from trade are positive and one for which the gains are
exactly zero. The proof strategy of Bergemann et al. shares some features with the one
employed here, in that they construct a saddle point consisting of a maxmin mechanism
and a minmax information structure, and they also use duality arguments to bound profit
for the maxmin mechanism.2 Our contribution is to provide a flexible and general theory
of maxmin auctions and also to give a clearer understanding of the essential properties
that characterize maxmin auctions, namely the double revelation principle and the role
of the aggregate allocation sensitivity and the aggregate excess growth.

Chung and Ely (2007), Yamashita (2016), and Chen and Li (2018) also study maxmin
auction design when the Seller does not know the information structure but when values
are private and when the Seller preferred equilibrium is selected. In contrast, we focus on
a common value environment. Other conceptually related studies of robust auction design
are Neeman (2003), Brooks (2013), Yamashita (2015), Carroll (2016), and the literature
on algorithmic mechanism design (e.g., Hartline and Roughgarden, 2009).

The rest of the paper proceeds as follows. Section 2 describes our model and solution
concept. Section 3 presents an informal derivation of the strong maxmin solution. It
is in this part of the paper that we describe the aforementioned system of differential
and integral equations that our solution is constructed to satisfy. Section 4 presents our
formal construction and characterization. Section 5 argues that all well-behaved strong
maxmin solutions have the same profit guarantee, and describes a collection of saddle
point problems that are solved by this solution. Section 6 discusses welfare in the many-
bidder limit, and Section 7 concludes.

1Du (2018) also solves the present problem in the case of one bidder. With one bidder and binary
values, our model reduces to that of Carrasco et al. (2018).

2Interestingly, the minmax information structure they identify coincides with the one we construct,
but the maxmin mechanisms are different.
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2 Model

2.1 Primitives

A unit of a good can be sold to one of N bidders. The bidders have a pure common value
for the good v which is distributed according to the cumulative distribution function H
on R+. Let V be the support of H. We assume that V is bounded, with v and v denoting
the minimum and maximum, respectively. We also assume that v < v. If not, then the
value is common knowledge, and the Seller can easily extract all the surplus.

The bidders have preferences over probabilities of receiving the good qi and the amount
they pay for it ti, which are represented by the state-dependent utility index vqi − ti.

There is a constant cost of production c ≥ 0. The Seller’s profit from the profile of
allocations q = (q1, . . . , qN) and transfers t = (t1, . . . , tN) is

∑N
i=1(ti − cqi). We make the

further non-degeneracy assumption that the expected value is at least c, so that the ex
ante expected gains from trade are non-negative.3

For technical reasons, we will assume that the left tail of H is not too thin. To state
the precise condition, we will need the following definition: For a cumulative distribution
F on R, we define

F−1(α) = min{x | F (x) ≥ α}

to be the quantile function for F . Because F is increasing and continuous from the right,
there is a closed set of values that have a higher cumulative probability than α, so this
minimum is well-defined. Moreover, F−1 is an increasing function and is continuous from
the right, and it has discontinuities when there are gaps in the support of F .

Now, let GN denote the distribution of the sum of N independent draws from the
exponential distribution with unit arrival rate. (This object will feature prominently in
the analysis.) We assume that there exists a ϕ > 1 such that

lim sup
x→0

H−1(GN(x))− v
xϕ

<∞, (1)

This condition is trivially satisfied when there is a mass point at v, and it is also satisfied
whenever H has a density that is bounded away from zero around v.4

2.2 Information

Fix cumulative distributions F1 and F2. Recall that the distribution F1 is a mean-
preserving spread of F2 if there exists if there exist a probability space and random

3Otherwise, a trivial solution to the maxmin problem is that the bidders have no information about
the value and the Seller chooses to keep the good.

4If this is the case, then H(v) must grow at least linearly in v around v, so H(v) ≥ b(v − v) for some
b > 0. As a result, H−1(GN (x))− v ≤ GN (x)/b. Given the explicit formulae for GN and its density, gN ,
in equations (13) and (14), it is clear that GN (x)/xϕ → 0 as long as ϕ > 1 and N > 1.
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variables X1 and X2 such that X1 has distribution F1, X2 has distribution F2, and
E[X1|X2] = X2. An equivalent characterization is that∫ x

y=−∞
(F1(y)− F2(y))dy ≥ 0, (2)

for all x ∈ R and the left-hand side is exactly equal to zero when x =∞ (Blackwell and
Girshick, 1954; Rothschild and Stiglitz, 1970).

A information structure S consists of (i) a measurable set Si of signals for each bidder
i, (ii) a joint distribution π ∈ ∆(S) where S = ×Ni=1Si, and (iii) an interim value function
w : S → R such that H is a mean-preserving spread of the distribution of w(s). For a
profile of signals s, w(s) is interpreted as the interim expectation of v conditional on s.5

2.3 Mechanisms

A mechanism M consists of measurable sets of messages Mi for each i and measurable
mappings

qi : M → [0, 1], ti : M → R

for each i, where M = ×Ni=1Mi is the set of message profiles, such that

N∑
i=1

qi(m) ≤ 1.

For technical reasons, we will assume that ti is bounded below (although it may be
negative). We further restrict attention to mechanisms that satisfy a condition we call
participation security : For every i, there exists 0 ∈Mi such that

vqi(0,m−i)− ti(0,m−i) ≥ 0

for every v ∈ V and every m−i ∈ M−i. By sending this message, bidder i ensures herself
a non-negative payoff ex post, no matter what messages are sent by the other bidders.

2.4 Equilibrium

A mechanism M and an information structure S comprise a game of incomplete infor-
mation. A (behavioral) strategy for bidder i is a transition kernel

βi : Si → ∆(Mi).

A profile of strategies β = (β1, . . . , βN) is identified with a transition kernel that associates
to each s ∈ S the product distribution β1(s1)× · · · × βN(sN) on ∆(M).

5This definition is equivalent to one in which we specify the joint distribution of the signals and the
value. The interim expectation is the a object in our analysis, which is why we treat it as a primitive in
our definition of an information structure.
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Given a strategy profile β, bidder i’s payoff is

Ui(β,M,S) =

∫
S

∫
M

(w(s)qi(m)− ti(m))β(dm|s)π(ds).

Note that since w, q, and −t are all bounded above, this integral is always well-defined.
A strategy profile β is a (Bayes Nash) equilibrium if for all i and strategies β′i,

Ui(β,M,S) ≥ Ui(β
′
i, β−i,M,S).

The set of equilibria is denoted by B(M,S). Expected profit is

Π(β,M,S) =

∫
S

∫
M

N∑
i=1

(ti(m)− cqi(m))β(dm|s)π(ds).

2.5 Solution concept

Informally, we wish to to identify mechanisms that provide the best possible profit guar-
antee across all information structures and equilibria. We can think of as a zero-sum game
between the Seller, who chooses the mechanism to maximize equilibrium profit, and Na-
ture, who adversarially chooses the information structure to minimize equilibrium profit.
But in order to rigorously define this game, we would have to specify which equilibrium is
played, when there are multiple, and what the players’ payoffs should be if no equilibrium
exists.

Our analysis will lead to what we consider an exact solution to this joint mechanism
design and information design problem. Equilibrium existence will not be an issue at the
saddle point. More surprisingly, neither the Seller nor Nature can profitably deviate from
the solution we construct, regardless of how we select the equilibrium that is played after
a deviation. In that sense, the problem seems to favor an impartial perspective, where
we are not prejudiced towards either the Seller or Nature in equilibrium selection. This
spirit is captured by the following solution concept.

A strong maxmin solution of the joint mechanism design and information design prob-
lem consists of a triple (M,S, β) of a mechanism, an information structure, and a strategy
profile, with profit Π = Π(β,M,S), such that the following are satisfied:

1. For any information structure S ′ and any equilibrium β′ of (M,S ′), Π ≤ Π(β′,M,S ′);

2. For any mechanism M′ and any equilibrium β′ of (M′,S), Π ≥ Π(β′,M′,S);

3. β is an equilibrium of (M,S).

We refer to Π as the profit guarantee of the solution.
Conditions 1 and 2 say that the Seller and Nature cannot improve their payoff by

deviating, even if the deviator select the equilibrium. Condition 3 says that the guarantee
is not vacuous, and there exists an equilibrium at which Π is attained. In fact, the
definition implies that for a solution (M,S, β), all equilibria of (M,S) must generate
profit equal to Π.
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Our main result is the construction of strong maxmin solution (Theorem 1). Note that
the definition leaves open the possibility of solutions (M,S, β) for which equilibria will fail
to exist on M and S for a wide range of information structures and mechanisms, which
effectively limits the set of deviations that are considered. The mechanism and information
structure we construct will, however, be sufficiently well-behaved that an equilibrium
exists for every alternative mechanism or information structure, as long as the set of
messages or the set of signals, respectively, is finite. We call a solution with this property
regular. Moreover, all regular solutions must have the same profit guarantee (Theorem 3).
After the uniqueness result, we will present a collection of maxmin mechanism design and
minmax information design that are solved by our strong maxmin solution (Corollaries 1
and 2).

3 A roadmap to the solution

We will give a complete construction a strong maxmin solution at the beginning of Section
4. Theorem 1 will then verify that the construction is indeed a solution. The construction
and proof are somewhat intricate. This section gives an informal derivation and expla-
nation of our solution. To be clear, our purpose is to develop intuition, and the proof of
Theorem 1 in no way depends on the following discussion. In fact, many of the concepts
we now introduced are used only implicitly in the formal arguments.

3.1 The structure of the solution

The strong maxmin solution we construct will be denoted (M,S, β). The high level
structure is as follows. The signals for the information structure and the messages for the
mechanism are elements of M i = Si = [0,∞], the extended real line. Thus, a common
language is used for signals and messages. In addition, the equilibrium strategies specify
that each bidder send a message that is equal to their signal: for all i and si,

βi(si) = si.

Thus, one interpretation of the solution is that the maxmin mechanism M is a direct
mechanism on the minmax information structure S, in which messages are normalized
to be equal to signals and bidders report truthfully in equilibrium. An equivalent inter-
pretation is that S is a Bayes correlated equilibrium (BCE) on M, in which the signals
are “recommendations” of a message to send, and in equilibrium, agents follow their
recommendation.

If we held the information structure fixed and maximized profit across mechanisms and
equilibria, then the well-known revelation principle (Myerson, 1981) says that it is without
loss of generality to restrict attention to direct mechanisms. Similarly, if the mechanism
were fixed and we minimized profit across information structures and equilibria, then it
is without loss of generality to restrict attention to BCE (Bergemann and Morris, 2013,
2016), which is a kind of revelation principle for games. In the present model, both
the mechanism and the information structure are endogenous objects, so the standard
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revelation arguments do not apply.6 It is therefore a surprising result that there exists
a solution that admits the same normalization. We refer to this as the double revelation
principle.

3.2 The minmax information structure

We next describe the rest of the minmax information structure S, from which we will
subsequently derive the maxmin mechanism. The form of S can be understood using
the celebrated revenue-equivalence formula of Myerson (1981), suitably adapted to the
common value setting.

Consider an information structure with independent real signals si with corresponding
densities fi. Revenue equivalence says that expected profit from a direct mechanism is,
up to a constant, the expectation of the virtual value of the bidder who receives the good.
When the value function is differentiable, the virtual value of bidder i when the signal
profile is s is given by7,8

ψi(s) = w(s)− c− 1− Fi(si)
fi(si)

∂w(s)

∂si
,

and where Fi cumulative distribution of bidder i’s signal. Thus, the virtual value is equal
to the gains from trade, minus the inverse hazard rate times the sensitivity of the value
to bidder i’s signal. The inverse hazard rate is the measure of higher types who receive
an information rent from being able to mimic si, relative to the likelihood of si, while
∂w(s)/∂si quantifies the value of bidder i’s private information at the profile s.

Among such information structures, it is without loss of generality to normalize the
signals to be exponential with a unitary arrival rate:

Fi(x) = 1− exp(−x).

As a result, the inverse hazard rate is constant and equal to one, and drops out of the
virtual value formula. The remaining degree of freedom in specifying information is the
value function w(s).

We may ask, among such information structures, which one would be the worst case
for the Seller? Drawing on intuition from zero-sum games, we might suspect that the

6In particular, for a fixed information structure, any mechanism M and equilibrium β has a corre-
sponding direct mechanism M′ in which truth telling is an equilibrium. But the mechanism M′ may
have other equilibria with no counterpart in M, and our solution concept imposes strong conditions on
how profit varies across all equilibria. Similarly, replacing a given information structure and equilibrium
with the corresponding direct information may lead to a different set of equilibria.

7In the classic formulation of Myerson (1981), bidder i’s virtual value is their value minus the inverse
hazard rate. We would obtain this formula result if there were bidder-specific values wi(s) and we
normalizes signals so that wi(s) = si, in which case the partial derivative is identically one. The formula
reported here is a special case of one that appears in Bulow and Klemperer (1996).

8Our formal arguments in Section 4 sidestep the direct calculation of virtual values, in order to
avoid technical complications associated with whether the integral representation of the bidders’ indirect
utilities holds.
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worst case would be associated with indifference between lots of mechanisms. This would
roughly mean that S is hard to best respond to, in the sense that while lots of mechanisms
perform reasonably well, no mechanism stands out as exceptional.

In fact, it is easy to engineer the value function so that the virtual value is the same
for all bidders, and hence conditional on allocating the good, the Seller is indifferent as
to who it is allocated to. This happens when the interim value is of the form9

w(s) = w(Σs),

where Σs is the aggregate signal :

Σs = s1 + · · ·+ sN .

(We will maintain this notational convention for the sum of a vector’s elements throughout
the paper.) As a result, the interim expected value is equally sensitive to all signals, and
all bidders have the same virtual value of w(Σs)− c− w′(Σs).

Among such information structures, we are still free to choose the particular function
of the aggregate signal. An important variant of our model, which we discuss in Section
4.3, is the must-sell case, where the good has to be sold with probability one. This
is in contrast to the can-keep case, in which the Seller can withhold the good. Note
that the aggregate signal has the cumulative distribution GN mentioned previously in
the statement of the left-tail condition in Section 2, and we let gN denote the associated
density.10 Since all bidders have the same virtual value, profit in the must-sell case is∫ ∞

x=0

(w(x)− c− w′(x)gN(x)dx. (3)

This formula assumes that transfers are set so that participation security binds. Note
that the expectation of w(x) is pinned down from H and would be the same with any
feasible value function. Thus, to minimize profit, we should pick the value function that
has the largest expected slope. The expected slope is maximized by the fully-revealing
value function:

ŵ(x) = H−1(GN(x)),

where H−1 is the quantile function corresponding to H. In words, ŵ matches aggregate
signals and values so that the percentile of the aggregate signal is always equal to the
percentile of the value. This value function is fully revealing in the sense that there is
no uncertainty about the value, conditional on the join of the bidders’ information. It is
intuitive that the fully-revealing value function minimizes profit, since it maximizes the
amount of private information the bidders have about the value. Figure 1 illustrates the
fully-revealing value and virtual value functions when c = 0 and v is standard uniform,
ŵ(x) is equal to GN(x), which consist of a gray segment below x∗ and a black segment
above x∗.

9We hope we will not create confusion by using the same notation for the interim value as a function
of the signal profile and for the interim value as a function of the aggregate signals.

10Recall that the signals are independent draws from the standard exponential distribution. Both GN

and gN have closed-form expressions, given as equations (13) and (14) below.
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Figure 1: N = 2, v ∼ U [0, 1], and c = 0. The minmax value functions in the must-sell
and can-keep cases coincide above x∗. The fully-revealing value function (in blue) is equal
to G2.

For some distributions, ŵ will also be the minmax value function, even if the good
does not have to be sold. This is not the case for the uniform distribution. Examining the
right-hand panel of Figure 1, we can see that the virtual value is strictly negative when
the aggregate signal is low, so that the Seller would strictly prefer to withhold the good
at such profiles. The Seller can be made strictly worse off by adding some noise to the
bidders’ information to create additional indifference on the part of the Seller, between
selling and not selling. For this to be the case, the virtual value must be exactly zero:

w(x)− c− w′(x) = 0,

i.e., the interim expected gains from trade, denoted γ(x) = w(x) − c, is of the form
k exp(x) for some positive constant k. The function γ(x), which we refer to as the gains
function, will turn out to be a key object in our analysis.

The exponential shape for the gains function can be achieved by adding noise to the
signal, so that we effectively pool realizations where the virtual value has different signs.
In the uniform example, we can replace the fully-revealing gains function γ̂(x) = ŵ(x)− c
when the value is low with an exponential shaped segment on an interval [0, x∗]. Both
γ̂(0) and x∗ are chosen so that H remains a mean-preserving spread of the distribution
of the interim expected value, and so that the exponential shape connects continuously
with the fully-revealing gains function. We denote this new gains function by γ, and its
associated value function is denoted w. In fact, the w depicted in black in Figure 1 is the
minmax gains function when the Seller can keep the good and when the cost is zero.

More generally, the sign of the fully-revealing virtual value might switch back and
forth. In Section 4.1, we describe a general procedure that transforms the fully-revealing
gains function so that the resulting virtual value is everywhere non-negative, and it is al-
ways weakly optimal to allocate the good. We refer to this as grading the gains function,
meaning we decrease the derivative of the gains function so that it does not grow faster
than exponential. The graded gains and value functions are denoted by γ and w, respec-
tively, and the resulting information structure is denoted S. Proposition 1 characterizes
profit for this construction and gives a generalized upper bound Π for the optimal profit
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guarantee, which is simply

Π =

∫ ∞
x=0

γ(x)gN−1(x)dx. (4)

This formula can be obtained from (3) via integration by parts, if we replace w(x)−c with
γ and use the identity that dgN(x)/dx = gN−1(x)− gN(x). We can alternatively interpret
Π as the highest posted price at which all bidders would be willing to purchase the good,
regardless of their signals. Such a posted price would always allocate the good and make
participation security bind, and hence it is an optimal mechanism on S (although it is
not a maxmin mechanism!)

3.3 Sufficient conditions for an optimal profit guarantee

We will presently derive a maxmin mechanismM from the minmax information structure
S. At first glance, S does not seem to tell us very much about M, because so many
mechanisms are optimal. We will learn quite a bit, however, by focusing our attention on
direct mechanisms on S for which S induces a profit minimizing BCE and for which Π is
minimum profit.

Let us define an outcome of such a mechanism to be a joint distribution over values
and message profiles σ ∈ ∆(V × M). Every information structure and equilibrium of
this mechanism can be associated with an outcome σ, where likelihood of v and m is
simply the expectation, across s, of the likelihood that m is the message profile induced
by the bidders’ realized signals and strategies and such that v is the value drawn from the
a conditional distribution of v given w(s) (which exists by the mean-preserving spread
condition). The set of outcomes that can be induced by some information structure and
equilibrium is equivalent to the set of Bayes correlated equilibria (BCE). A BCE is an
outcome that satisfies: obedience constraints, which say that for all i and mi, mi is a best
response to the conditional distribution of (v,m−i) induced by σ and conditioning on mi;
and marginal constraints, that the marginal distribution on V is the prior H.

Let us denote by σ an outcome induced by (S, β). We are considering mechanisms
such that σ is the profit-minimizing BCE of the mechanism and that profit in this BCE is
Π. It will turn out that the only obedience constraints that are relevant for our problem
are those associated with local optimality, i.e., that for all i and mi,∫

V×M−i

(
v
∂qi(mi,m−i)

∂mi

− ∂ti(mi,m−i)

∂mi

)
σ(dv, dm−i|mi) = 0.

13



The BCE σ is therefore the solution to an infinite dimensional linear program, for
which the associated Lagrangian is11

L(σ, {αi}, λ) =
N∑
i=1

∫
V×M

(ti(m)− cqi(m))σ(dv, dm)

+
N∑
i=1

∫
V×M

αi(mi)

(
v
∂qi(m)

∂mi

− ∂ti(m)

∂mi

)
σ(dv, dm)

+

∫
V×M

λ(v) (H(dv)− σ(dv, dm)) .

(5)

This Lagrangian has three terms: profit induced by the BCE, the sum of local obedi-
ence constraints times their corresponding multipliers (the functions αi), and the sum of
marginal constraints times their corresponding multipliers (the function λ). A necessary
first-order condition for σ to be the profit-minimizing BCE is that for all (v,m),

N∑
i=1

[
ti(m)− cqi(m) + αi(mi)

(
v
∂qi(m)

∂mi

− ∂ti(m)

∂mi

)]
− λ(v) ≥ 0, (6)

with the constraint holding as an equality for (v,m) in the support of σ.
It turns out that the structure of S implies particular values for the multipliers αi and

λ. Based on the envelope theorem, we can guess that λ(v) is the derivative of minimum
profit in the maxmin mechanism with respect to the prior probability of v. This should
coincide with the derivative of Π with respect to the probability of v, which we denote
by λ(v). If not, then by making v either more or less likely, we could make minimum
profit from the maxmin mechanism increase faster than Π. The function λ has an explicit
formula given in equation (19) below, and we will shortly use the fact that λ is concave.12

As for the multipliers on local obedience, there is an even simpler answer: αi(mi) is
constant and equal to 1 for all i. The reason is that the Lagrangian (5) is very similar to
the Lagrangian for the linear program of maximizing profit given the fixed information
structure S, where we hold fixed σ = σ and optimize over (qi, ti), and local obedience is
reinterpreted as local incentive compatibility. As is well known, local incentive constraints
bind at the solution, and the optimal multiplier on local incentive compatibility is equal
to the inverse hazard rate of the signal. For S, this hazard rate is constant and equal to
1 due to the standard exponential normalization.

By substituting in these multipliers, equation (6) reduces to a constraint on the
maxmin allocation and transfer rules. If we denote the aggregate supply by Q(m) =
Σq(m), then (6) is equivalent to for all (v,m),

∇ · t(m)− Σt(m) ≤ v∇ · q(m)− λ(v)− cQ(m), (7)

11Since we are just providing informal motivation, we will not rigorously argue that this Lagrangian
is equivalent to the profit-minimization program. The fact that this is the correct Lagrangian is a
consequence of Theorem 1 below.

12The optimal value multiplier must be concave, because if, for every v, (6) holds as an equality for
some m, then it must be that λ(v) is the minimum of a collection of linear function of v, indexed by m.
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where ∇· is the divergence operator. Recall that this constraint must bind on the support
of σ, which, in particular, includes pairs (v,m) such that v = ŵ(Σm). For a fixed m, this
value must minimize the right-hand side of (7), and since λ is concave, it must be that

∇ · q(m) = λ
′
(ŵ(Σm)). (8)

We refer to the left-hand side of (8) as the aggregate allocation sensitivity. In fact, λ
′
(ŵ(x))

can be computed in closed form, and we denote it by µ(x). When the value function is
full-revealing, µ(x) = (N − 1)/x, and on an interval where the value function is graded,
µ is a constant that just depends on the end points of the interval. The exact formula is
given in equation (15) below.

Once we substitute in the optimal aggregate allocation sensitivity, equation (7) reduces
to a condition on the transfers:

∇ · t(m)− Σt(m) = ŵ(Σm)µ(Σm)− λ(ŵ(Σm))− cQ(m). (9)

The left-hand side of (9) the aggregate excess growth, i.e., difference between how fast the
bidders’ transfers grow in their own messages relative to exponential growth. We refer to
equation (9) as profit-incentive alignment (PIA), since it imposes a linkage between ex
post profit, Σ(t−cq), and the sum of the bidders’ local incentive constraints, v∇·q−∇· t.
This ensures that as long as local incentive constraints are satisfied, profit cannot fall too
low.

We have been using the profit-minimization program to derive necessary conditions
on a maxmin mechanism. But as we argue in Proposition 2, these conditions are actually
sufficient for a mechanism to guarantee profit of at least Π. Specifically, if we have
a mechanism with differentiable allocation and transfer rules and such that that (i) the
aggregate allocation sensitivity is µ and (ii) the aggregate excess growth and the aggregate
supply satisfy (9), then profit must be at least Π in all information structures and all
equilibria. The proof is essentially an application of the weak duality.

3.4 Construction of a maxmin mechanism

The last step is to explicitly construct allocation and transfer rules that satisfy (8) and
(9) and such that truth telling is an equilibrium at S. Note that the Proposition 2 does
not imply that truth telling is an equilibrium, and this is something we will have to verify
for the mechanism we construct.

An allocation rule with the desired aggregate allocation sensitivity is relatively easy
to guess. Consider the case with two bidders and zero cost. If we assume that Q(m) = 1,
then q2(m1,m2) = 1− q1(m1,m2), and aggregate allocation sensitivity reduces to

∂q1(m1,m2)

∂m1

− ∂q1(m1,m2)

∂m2

=
1

m1 +m2

.

Now consider a level curve where m1 + m2 = x. Then we can view the left-hand side as
the total derivative with respect to m1 along the parametric curve m2(m1) = x−m1, so
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that integrating both sides, we obtain

q1(m1,m2) =
m1

x
+ C(x).

In order to have q1 ∈ [0, 1], we must have C(x) = 0, so the allocation probability is simply
the bidder’s share of the aggregate message.

More generally, equation (8) is satisfied by the following proportional allocation rule:

qi(m) =

{
mi

Σm
Q(Σm) Σm > 0,

1
N
Q(0) Σm = 0,

where Q is a continuous and almost everywhere differentiable aggregate supply (which
only depends on the aggregate message). This allocation rule has a aggregate allocation
sensitivity that only depends on Q. In equation (15), we give an explicit formula for an
aggregate supply function Q such that the induced aggregate allocation sensitivity is µ,
which is 1 whenever the value function is fully revealing, as it must be to maximize profit
on S. This Q then defines the maxmin allocation rule, which we denote by q.

This leaves the transfers. Since Q has been specified, we can denote by Ξ the target
aggregate excess growth, which is equal to the right-hand side of (9) and is just a function
of the aggregate message. In Section 4, we will present a general solution to this equation.
The formula can be motivated as follows. Any solution to (9) must be associated with an
apportionment of Ξ among the bidders, where

ξi(m) =
∂ti(m)

∂mi

− ti(m) (10)

is bidder i’s share of the excess growth. Assuming for now that ti(0,m−i) = 0,13 we can
integrate (10) to obtain the representation

ti(m) = exp(mi)

∫ mi

x=0

exp(−x)ξi(x,m−i)dx. (11)

Thus, the problem is to choose ξi so that Σξi(m) = Ξ(m).
At first glance, there seems to be tremendous flexibility in how we divide the aggregate

excess growth. The danger lurking here is that there is no guarantee, for an arbitrarily
choice of ξi to satisfy (9), that an equilibrium will exist on any information structure,
let alone S. As a result, the profit lower bound implicit in (9) may be vacuous. At a
high level, this is related to well-known issues of equilibrium non-existence in games with
discontinuous payoffs and/or non-compact action spaces. This suggests that we should
impose a kind of transversality condition on the transfers, so that they are continuous

13Note that with the proportional allocation rule, qi(0,m−i) = 0 as long as Σm−i > 0. Thus, aside
from the zero message profile which is exceptional, participation security reduces to ti(0,m−i) ≤ 0. For
the solution we define below, ti(0) = vqi(0), which will be strictly positive when v > 0.
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and bounded at infinity. Inspection of equation (11) indicates that a necessary condition
for the transfers to be bounded is that∫ ∞

mi=0

ξi(mi,m−i) exp(−mi)dmi = 0. (12)

In other words, it must be that each bidder has zero excess growth in expectation across
their own message, holding fixed the other bidders’ messages. If the excess growth
functions are themselves continuous and bounded, the transfers will be continuous and
bounded on the extended real line, and we could apply standard equilibrium existence
arguments. This property is used in Section 5 to argue that the profit guarantee of a
strong maxmin solution unique among sufficiently well-behaved solutions.

Even though we motivated (12) in terms of abstract conditions for equilibrium ex-
istence, it turns out to be closely related to incentive compatibility on S. The usual
Myersonian revenue equivalence arguments, applied to S, tell us that that if the allo-
cation q is implemented, then the implementing interim transfers are completely pinned
down from local incentive compatibility. When there are two bidders, equation (12) is
equivalent to interim incentive compatibility of q, and more generally, it is a sufficient
condition. We discuss this further in the proof of Proposition 3 and footnote 16.

The remaining question is whether there exists a transfer function that satisfies equa-
tions (9) and (12). At first glance, these equations seem to contradict one another: If the
bidders split Ξ between themselves as per (9), how can every bidder get zero excess growth
on average as per (12)? The way out of the “paradox” is that the ex ante expectation of
Ξ turns out to be zero. Indeed, when there are two bidders, the following excess growth
functions work:

ξi(m) =
1

2

[
Ξ(m)−

∫ ∞
x=0

Ξ(x+mj) exp(−x)dx+

∫ ∞
x=0

Ξ(mi + x) exp(−x)dx

]
.

We can interpret ξ as follows: Each bidder is allocated half of the excess growth, which is
the first term inside the brackets. Without further modification, this would generally vio-
late (12). The second term in the brackets “cancels out” bidder i’s share of the aggregate
excess growth on average across mi so that (12) is satisfied. The final term in the brackets
cancels out the counterpart of the middle term in ξj, so that the aggregate excess growth
is preserved. Finally, when we take an expectation across mi, the last term reduces to the
ex ante expectation of Ξ, which is zero, so that it does not change the expected excess
growth across mi. These excess growth functions define transfer rules that satisfy (9) and
(12), so that β is an equilibrium at S.

When there are more than two bidders, there is a generalization of this formula,
which can be recovered by computing the excess growth for the transfer defined in (17)
below. We should emphasize, however, that while the individual excess growths and the
representation (11) are useful motivation for the transfer rule we construct, we actually
give an explicit formula for the transfers in Section 4, and our subsequent arguments use
the individual excess growths implicitly. Similarly, we do not make explicit use of BCE
in the proof of Theorem 1. Nonetheless, these ideas are all at work “under the hood.”
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Figure 2: The maxmin mechanism and transfer rule in the uniform case with N = 2.

A non-trivial technical complication, which we have hitherto glossed over, is that the
functions λ and Ξ may not be bounded as the aggregate message goes to zero. Indeed,
(9) includes a term ŵ(x)µ(x), which necessarily blows up for x small when v > 0 and the
value function is not graded at 0. This is dealt with by breaking the transfer up into two

pieces, a base payment t
b
i(m) = vqi(m) and a premium t

p
i . The excess growth from the

base payment is v(µ(Σm)−Q(Σm)), and can be substituted into (9) to yield a premium
aggregate excess growth, given by equation (18) below. The preceding discussion then
applies to the construction of the premium transfers.

Theorem 1 shows that this construction completes the specification of a maxmin mech-
anism, and therefore completes the construction of a strong maxmin solution. The optimal
allocation and transfer rules are plotted for the two-bidder/uniform/zero-cost example in
Figure 2 for message profiles in [0, 5]2.

4 A Strong Maxmin Solution

We now formally construct and characterize a strong maxmin solution to the joint mech-
anism design and information design problem. The structure of the arguments is quite
different from the informal overview in Section 3. We will first completely construct the
solution in Section 4.1. We then present our main theorem in Section 4.2, which asserts
that constructed triple is indeed a strong maxmin solution. The proof immediately fol-
lows. Sections 4.3 and 4.4 discuss two special cases, when the good must be sold and
when the value distribution is single crossing, respectively.
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4.1 Construction of the solution

4.1.1 Minmax information

The minmax information structure S is defined as follows. The N bidders have signal
spaces Si = [0,∞], with the standard measurable structure. The distribution of the
signals is

π(ds) = exp(−Σs)ds.

In other words, the signals are independent draws from the exponential distribution with
arrival rate 1.

The aggregate signal x = Σs has an Erlang distribution (which is a special case of the
Gamma distribution) and has a probability density function

gN(x) =
xN−1

(N − 1)!
exp(−x) (13)

and cumulative distribution function

GN(x) = 1−
N∑
n=1

gn(x). (14)

The interim expected value is a function of the aggregate signal is defined according to
the following grading procedure. Recall that ŵ(x) = H−1(GN(x) is the full-revealing value
function, and γ̂(x) = ŵ(x)− c is the fully-revealing gains function. Let

Γ̂(x) =

∫ x

y=0

γ̂(y)gN(y)dy.

Also let

E(x) =

∫ x

y=0

exp(y)gN(y)dy,

which is strictly increasing, and hence it has a well-defined inverse E−1. Let cav(Γ̂ ◦E−1)

denote the smallest concave function that is everywhere above Γ̂ ◦ E−1. We then set
Γ = cav(Γ̂ ◦ E−1) ◦ E, and define

γ(x) =
1

gN(x)

d

dx
Γ(x);

w(x) = γ(x) + c,

where the derivative is taken from the right. We refer to γ and w as the graded gains
function and the graded value function, respectively.14

14Grading is evocative of “ironing” in Myerson (1981) and concavification in Kamenica and Gentzkow
(2011). Grading is used to construct the bidders’ information that minimizes the Seller’s profit, subject to
the Seller being always willing to allocate the good and subject to a mean-preserving spread constraint. In
Myerson, ironing is used to construct the mechanism that maximizes the Seller’s profit, subject to global
incentive compatibility. In Kamenica and Gentzkow, concavification is used to construct a receiver’s
information to maximize a sender’s payoff, subject to a mean-preserving spread constraint. We can find
no tight link between these problems, beyond the very high-level connection of optimization subject to
monotonicity and/or mean-preserving spread constraints.
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4.1.2 Maxmin mechanism

We next construct the maxmin mechanism M. The message space is M i = [0,∞], the
extended real line. Note that the infinite messages will not feature prominently in the
analysis of this section, but it will be used to argue that the solution is regular in Section
5.

Let us define a graded interval to be an interval [a, b] such that Γ(x) = Γ̂(x) for

x ∈ {a, b} and Γ(x) > Γ̂(x) for x ∈ (a, b). The allocation rule is

qi(m) =


Q(0)
N

if Σm = 0;
mi

Σm
Q(Σm) if 0 < Σm <∞;

1
|{j|mj=∞}| if Σm =∞,

where the aggregate supply function is given by

Q(x) =

{
C(a, b) x

N
+D(a, b) 1

xN−1 if x ∈ [a, b], where [a, b] is a graded interval;

1 otherwise,
(15)

and

C(a, b) = N
bN−1 − aN−1

bN − aN
;

D(a, b) =
b− a

bN − aN
aN−1bN−1.

We let µ(Σm) denote the aggregate allocation sensitivity for q:

µ(x) =

{
C(a, b) if x ∈ [a, b),where [a, b] is a graded interval,
N−1
x

otherwise.
(16)

The transfer rule is decomposed into a base and a premium:

ti(m) = v qi(m) + t
p
i (m).

The premium t
p
i is defined as follows. Let Z be the set of all permutations of {1, . . . , N},

and for a message profile m ∈M and ζ ∈ Z, we let mζ≤k denote the subvector of messages
m{j|ζ(j)≤k}. Then

t
p
i (m) =

1

N !

∑
ζ∈Z

∫ ∞
x=0

(
Ξ
p
(Σmζ<ζ(i) + x)− Ξ

p
(Σmζ≤ζ(i) + x)

)
gN−ζ(i)+1(x)) dx, (17)

where

Ξ
p
(x) =µ(x)(ŵ(x)− v)− λ (ŵ(x)) + (v − c)Q(x), (18)

is the premium aggregate excess growth and

λ(v) = Π +

∫ ∞
x=0

µ(x)GN(x)dŵ(x)−
∫ v

ν=v

µ(G−1
N (H(ν)))dν, (19)

and Π is given by (4).
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4.1.3 Strategies

Finally, let βi be the truthful strategy in the mechanismM under the information struc-
ture S: For all i, βi(si) = mi for every si = mi ∈ Si = M i.

This completes the construction of the solution..

4.1.4 Illustration

The objects used in the construction of the solution are illustrated in Figure 3. The
particular value distribution used for this example is uniform on [0, v̂] ∪ [v̂ + d, 1 + d],
where v̂ ∈ (0, 1), and where there is a strictly positive cost of production.

The top row of figures illustrates the construction of the gains function. From left to
right are the gains functions, integrated gains functions, and rescaled gains functions. The
fully-revealing versions are in light-gray, and the graded versions are in black. The gap
in the support of v corresponds to the discontinuity in the fully-revealing gains function
at x̂ = G−1

N (v̂). We can see that the graded integrated gains function is obtained via a
concavification that is depicted in the top right panel. There are two graded intervals,
which are [0, x1] and [x2, x3].

In the bottom row are pictures of various objects used in constructing M. Again,
fully-revealing objects are in gray and graded counterparts are in black (see Section 4.3
for the discussion of the fully-revealing objects). We can see that the aggregate supply
is 1 whenever the gains function is not graded, and it has a simple linear form on the
lowest graded interval. This is always the case when there is a graded interval at 0. The
aggregate allocation sensitivity is second from left. It is flat on graded intervals and equal
to (N − 1)/x everywhere else. The two right panels depict the value multiplier λ and the
aggregate excess growth of the premium Ξ

p
.

4.2 Main result

The main result of the paper is the following:

Theorem 1 (Existence). The triple (M,S, β) is a strong maxmin solution with a profit
guarantee of Π defined by (4).

The theorem will follow from Propositions 1–3. Proposition 1 verifies that S is a well-
defined information structure and that no equilibrium and mechanism can generate more
than Π in profit when the information structure is S. Proposition 2 verifies that M is a
well-defined mechanism and that no information structure and equilibrium can generate
less than Π in profit when the mechanism is M. Finally, Proposition 3 verifies that β is
an equilibrium of (M,S).

4.2.1 Upper bound on profit for S

We first establish Condition 1 in the definition of a strong maxmin solution.

Proposition 1. S is a well-defined information structure. For all mechanisms M and
equilibria β of (M,S), Π(β,M,S) ≤ Π.
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Figure 3: Objects used in the construction of the solution for N = 2, a value that is
uniform on [0, v̂] ∪ [v̂ + d, 1 + d] and a cost c. The cutoff x̂ is such that G2(x̂) = v̂. The
particular values used are v̂ = 0.95, d = 3, and c = 0.2.

To prove Proposition 1, we need the following characterization of mean-preserving
spreads.

Lemma 1. Fix distributions F1 and F2. Then F1 is a mean-preserving spread of F2 if
and only if for all α ∈ [0, 1], ∫ α

y=0

(
F−1

1 (y)− F−1
2 (y)

)
dy ≥ 0, (20)

with an equality at α = 1.

This characterization reframes stochastic dominance in terms of ordering of conditional
expectations. Specifically, F1 is a mean-preserving spread of F2 if for every α ∈ [0, 1], the
average of the α lowest realizations under F1 is less then than the average of the α lowest
realizations under F2. The proof of Lemma 1 is in Appendix A.

Now we argue that S is in fact an information structure with respect to the value
distribution H.

Lemma 2. The value function γ is a well-defined and increasing function. H is a mean-
preserving spread of the distribution of w(Σs).

Proof of Lemma 2. Since Γ ◦ E−1 is a concave function, it is continuously differentiable
at all but countably many points, and we can extend the derivative by right continuity.
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Since E is also differentiable, we conclude that Γ has a right derivative as well. We can
therefore define γ as specified.

We next argue that γ(x) is an increasing function. If x is such that there is an interval

[x, x + ε) on which Γ coincides with Γ̂, then their right-derivatives at x must coincide as
well, so that γ(x) = γ̂(x), where the latter is increasing. In addition, if [a, b] is a graded
interval and x ∈ [a, b), then it must be that γ has an exponential shape, as

d

dx
Γ(x) =

d

dz
(Γ(E−1(z)))|z=E(x)E

′(x) =
Γ̂(b)− Γ̂(a)

b− a
exp(x)gN(x).

The constant is chosen so that Γ(x) coincides with Γ̂(x) at the end points of the graded
interval. Finally, note that γ cannot jump up at x, as this would create a convex kink in
Γ ◦ E−1 at z = E(x), which contradicts the definition of Γ ◦ E−1. Moreover, if γ jumped
down at x, then this would have to happen at the end point of a graded interval at which
Γ and Γ̂ coincide. Thus, both Γ◦E−1 and Γ̂◦E−1 would have concave kinks at z = E(x),
which contradicts the fact that γ̂ is monotonically increasing. We conclude that γ is
continuous at the end points of graded intervals, and hence is monotonically increasing.

We will next show that the distribution of γ̂(Σs) is a mean-preserving spread of a
distribution of γ(Σs). The lemma then follows from the observation that the distribution
of γ̂(Σs) + c is H, and w(Σs) = γ(Σs) + c.

Let F and F̂ denote the cumulative distributions of γ(x) and γ̂(x), respectively, where

x ∼ GN . Since γ and γ̂ are both increasing, for all α ∈ [0, 1], γ(G−1
N (α)) = F

−1
(α) and

γ̂(G−1
N (α)) = F̂−1(α). From a change of variables x = GN(y), we conclude that∫ α

y=0

(F
−1

(y)− F̂−1(y))dy =

∫ G−1
N (α)

x=0

(γ(x)− γ̂(x))gN(x)dx

= Γ(G−1
N (α))− Γ̂(G−1

N (α)) ≥ 0

from the definition of the concavification. Moreover, it must be that Γ(∞) = Γ̂(∞), since

otherwise min{Γ(x), Γ̂(∞)} ◦ E−1 would be a smaller concave function that dominates

Γ̂ ◦ E−1. The result then follows from Lemma 1.

Next, we will need the following characterization of the graded gains function:

Lemma 3. For all x ∈ R+ and y ≥ x, γ(y) ≤ γ(x) exp(y − x).

Proof of Lemma 3. Since Γ ◦ E−1 is concave, it must be that its derivative

γ(E−1(z))gN(E−1(z))

E ′(E−1(z))
=

γ(E−1(z))

exp(E−1(z))

is decreasing. As a result, the function γ(x) exp(−x) is decreasing in x, which implies the
result.

We can now complete the proof of Proposition 1:
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Proof of Proposition 1. From Lemma 2, we know that S is well defined. To complete the
proof, we now show that Π is an upper bound on profit.

Let us write

Ui(si, s
′
i) =

∫
S−i

(w(si + Σs−i)qi(s
′
i, s−i)− ti(s′i, s−i)) exp(−Σs−i)ds−i,

and Ui(si) = Ui(si, si). If qi is Nash implemented, then for all i, si, and s′i,

Ui(si) ≥ Ui(si, s
′
i) = Ui(s

′
i) +

∫
S−i

(γ(si + Σs−i)− γ(s′i + Σs−i))qi(s
′
i, s−i) exp(−Σs−i)ds−i.

Participation security also implies that Ui(si) ≥ 0. Thus, for all ∆ > 0,

Ui =

∫
Si

Ui(si) exp(−si)dsi

≥
∫
{s∈S|si≥∆}

[Ui(si −∆) + (γ(Σs)− γ(Σs−∆))qi(si −∆, s−i)] exp(−Σs)ds

= exp(−∆)

∫
{s∈S|si≥∆}

[Ui(si −∆) + (γ(Σs)− γ(Σs−∆))qi(si −∆, s−i)] exp(−(Σs−∆))ds

= exp(−∆)

(
Ui +

∫
S

(γ(Σs+ ∆)− γ(Σs))qi(si, s−i) exp(−Σs)ds

)
.

We claim that

lim
∆→0

sup
si∈[0,∆]

∫
S−i

(γ(si + Σs−i + ∆)− γ(si + Σs−i)) exp(−Σs−i)ds−i = 0. (21)

To see this, note that

sup
si∈[0,∆]

γ(si + ∆ + Σs−i)− γ(si + Σs−i) ≤ γ(2∆ + Σs−i)− γ(Σs−i).

If γ is continuous at Σs−i, then the right-hand side converges to zero as ∆ → 0, so
the left-hand side is squeezed to zero as well. Thus, the integrand in (21) converges to
zero almost surely. Moreover, the integrand is bounded above by the integrable function
(v − c) exp(−Σs−i). The claim then follows from the dominated convergence theorem.

Thus, for any ε > 0, there exists a ∆̂ > 0 such that if ∆ < ∆̂, then

Ui ≥
1

(exp(∆)− 1)

[∫
S

(γ(Σs+ ∆)− γ(Σs))qi(si, s−i) exp(−Σs)ds− (1− exp(−∆))ε

]
.

Now, let

Q(x) =
1

gN(x)

∫
{s∈S|Σs=x}

N∑
i=1

qi(s) exp(−Σs)ds
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be the expected probability of allocating the good conditional on the aggregate signal
being x. Then clearly

N∑
i=1

Ui ≥
1

(exp(∆)− 1)

[∫ ∞
x=0

(γ(x+ ∆)− γ(x))Q(x)gN(x)dx− (1− exp(−∆))ε

]
.

Since total surplus is ∫ ∞
x=0

γ(x)Q(x)gN(x)dx,

we conclude that an upper bound on profit is∫ ∞
x=0

[
γ(x)− γ(x+ ∆)− γ(x)

exp(∆)− 1

]
Q(x)gN(x)dx+ exp(−∆)ε.

Lemma 3 implies that the term multiplying Q(x) is positive, and since Q(x) ≤ 1, profit
is bounded above by∫ ∞

x=0

[
γ(x)− γ(x+ ∆)− γ(x)

exp(∆)− 1

]
gN(x)dx+ exp(−∆)ε

=

∫ ∞
x=0

γ(x)

[
gN(x) +

gN(x)− gN(x−∆)

exp(∆)− 1

]
dx+ exp(−∆)ε,

where gN(x) = 0 if x < 0. The term in brackets converges pointwise for all positive x to
gN(x) + g′N(x) = gN−1(x) as ∆ → 0. To apply the dominated convergence theorem, all
that remains is to present an integrable bounding function, which is done in Lemma 12
in Appendix A.

As a result, as ∆→ 0, the profit bound converges to Π + ε. Since ε was arbitrary, we
have the result.

This argument uses the same basic ideas as revenue equivalence theorem of Myerson
(1981). We have, however, used the special structure of S to skip a direct computation of
virtual values and the integral representation for Ui(si). In so doing, we have sidestepped
a significant technical complication, since the value function γ need not be well-enough
behaved for standard formulations of the envelope theorem to apply (cf. Milgrom and
Segal, 2002).

4.2.2 Lower bound on profit for M

The next result establishes Condition 2 in the definition of a strong maxmin solution.

Proposition 2. M is a well-defined mechanism. For all information structures S and
equilibria β of (M,S), Π(β,M,S) ≥ Π.

We will repeatedly use the following result:
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Lemma 4. The aggregate allocation sensitivity µ is decreasing. As a result, λ is concave.

Proof of Lemma 4. On a non-graded interval, µ(x) = (N − 1)/x, which is decreasing,
and on a graded interval [a, b], µ(x) = C(a, b) ∈ [(N − 1)/b, (N − 1)/a]. The fact that
µ is decreasing across graded intervals then follows from the definition of C(a, b) and the
well-known inequality

N − 1

N

1

b
(bN − aN) ≤ bN−1 − aN−1 ≤ N − 1

N

1

a
(bN − aN),

e.g., Hardy, Littlewood, and Pólya (1934, equation (2.15.2)).
Concavity of λ then follows from the fact µ is decreasing and equation (19).

As with the information structure, we next verify that M is well-defined.

Lemma 5. M is a well-defined mechanism that satisfies participation security.

Proof of Lemma 5. There are three critical properties that need to be verified. Feasibility
of the allocation rule, existence of the transfers, and participation security.

The allocation rule is feasible as long as Q is between 0 and 1. Clearly it is non-
negative since the constants C(a, b) and D(a, b) are positive. So it is sufficient to check
that it is always less than 1. It is straightforward to argue that Q is equal to one at
the end points of a graded interval. Moreover, the derivative of the allocation rule on a
graded interval [a, b] is

Q
′
(x) =

C(a, b)

N
− (N − 1)

D(a, b)

xN

which is increasing. SoQ is convex on [a, b], and thereforeQ(x) ≤ max{Q(a), Q(b)} = 1.15

Existence of the transfers comes down to arguing that the integrals in equations (17)
and (19) are finite. First consider the last integral in (19), which is bounded above by∫ v

v=v

µ(G−1
N (H(v))dv =

∫ ∞
y=0

µ(y)ŵ(dy).

We will argue that this integral is finite using the left-tail condition (1), which implies
that

lim sup
x→0

ŵ(x)− v
x

= 0,

Thus, there exist C < ∞ and x̂ > 0 such that if x < x̂, (ŵ(x) − v)/xϕ ≤ C for some
ϕ > 1. If the value function is not graded at x, µ(x) = (N − 1)/x, and if x is in a graded
interval [a, b], then

µ(x) = C(a, b) =
bN − baN−1

bN − aN
N

b
≤ N

b
≤ N

x
. (22)

15We thank a referee for suggesting this simpler argument.
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Thus, if x ≤ x̂, we can plug in our bounds and integrate by parts to obtain∫ ∞
y=0

µ(y)ŵ(dy) ≤
∫ ∞
y=0

N

y
ŵ(dy)

=

∫ x̂

y=0

N

y2
(ŵ(y)− v)dy +

∫ ∞
y=x̂

N

y2
(ŵ(y)− v)dy

≤ N

∫ x̂

y=0

Cyϕ−2dy +

∫ ∞
y=x̂

N

y2
(v − v)dy

= N
1

ϕ− 1
Cx̂ϕ−1 +N

v − v
x̂

.

We conclude that the last integral in the definition of λ is bounded. The middle integral
is simply the expectation of the last integral across lower bounds x ∼ GN , so we conclude
that λ is bounded.

Now, given that ŵ is bounded above and µ is decreasing from Lemma 4, to show that
Ξ
p

is bounded, it is sufficient to show that lim supx→0(ŵ(x) − v)/x < ∞. But as argued
before this is a direct implication of (1). Hence, t

p
i is well defined and bounded.

Finally, participation security follows from the observation that t
p
i (0,m−i) = 0 for all

m−i, so that the ex post payoff from a message of 0 is (v − v)qi(0,m−i) ≥ 0.

Next, we show that the allocation rule q is right-differentiable and has the aggregate
allocation sensitivity in (16).

Lemma 6. The allocation qi(m) is right-differentiable with respect to mi at every m 6= 0,
and ∇ · q(m) = µ(Σm).

Proof of Lemma (6). When m is such that mj = ∞ for some j, then qi(mi + ε,m−i) =
qi(m) for all ε, so qi has a derivative of zero with respect to mi at m. Thus, we have
∇ · q(m) = 0 = µ(∞).

Suppose mj < ∞ for all j and m 6= 0. Since qi(mi,m−i) = mi

Σm
Q(Σm), for the right-

differentiability of qi it suffices to show that Q(x) is right differentiable at every x > 0.
From the functional forms of Q and µ, it is easy to check that

Q
′
(x) = µ(x)− N − 1

x
Q(x) (23)

for every x in the interior of a graded or non-graded interval. Since there are at most
countably many graded intervals, for any x′ > x > 0, we have

Q(x′)−Q(x) =

∫ x′

y=x

(
µ(y)− N − 1

y
Q(y)

)
dy.

Since the absolute value of the above integrand is bounded by 2(N−1)/x, Q is absolutely
continuous on any interval [a, b] with a > 0. Since µ(y) is also right-continuous in y, Q(x)
is right differentiable at every x > 0, and (23) holds for all x > 0.

Finally, it is easy to check that ∇·q(m) = µ(Σm) using the product rule and equation
(23).
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We now develop the lower bound on profit in M.

Lemma 7. The unconditional expectation of λ(v) is Π:∫ v

v=v

λ(v)H(dv) =

∫ ∞
x=0

λ(ŵ(x))gN(x)dx = Π.

Proof of Lemma 7. The equivalence of the two integrals follows from the change of vari-
ables v = ŵ(x) = H−1(GN(x)). For the second equality, it is sufficient to show that the
middle integral in (19) is equal to the unconditional expectation of the last integral, which
follows from Tonelli’s theorem:∫ ∞

x=0

∫ ∞
y=x

µ(y)dŵ(y)gN(x)dx =

∫ ∞
x=0

∫ x

y=0

gN(y)dyµ(x)dŵ(x)

=

∫ ∞
x=0

µ(x)GN(x)dŵ(x).

Lemma 8. The unconditional expectation of Ξ
p

is zero:∫ ∞
x=0

Ξ
p
(x)gN(x)dx = 0.

Proof of Lemma 8. Using the formula for Ξ
p

in equation (18) and Lemma 7, it is sufficient
to show that

Π =

∫ ∞
x=0

(
µ(x)(ŵ(x)− v)− (c− v)Q(x)

)
gN(x) dx. (24)

Since g′N(x) = gN−1(x)− gN(x) = (N − 1)gN(x)/x− gN(x), integration by parts gives:∫ ∞
x=0

Q
′
(x)gN(x) dx =

∫ ∞
x=0

Q(x)

(
1− N − 1

x

)
gN(x) dx,

which implies, using µ(x) = Q
′
(x) + N−1

x
Q(x),∫ ∞

x=0

Q(x)gN(x) dx =

∫ ∞
x=0

(
Q
′
(x) +Q(x)

N − 1

x

)
gN(x) dx =

∫ ∞
x=0

µ(x)gN(x) dx.

Thus, since γ̂(x) = ŵ(x)− c, applying the above equation and writing out the expression
for Π, we see that (24) is equivalent to∫ ∞

x=0

γ(x)gN−1(x)dx =

∫ ∞
x=0

γ̂(x)µ(x)gN(x)dx.

When Γ(x) = Γ̂(x), we have γ(x) = γ̂(x) and µ(x) = (N − 1)/x, so µ(x)gN(x) = gN−1(x)
and the two integrands above are exactly equal. On the other hand, over a graded interval
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[a, b], ∫ b

x=a

γ̂(x)µ(x)gN(x)dx = C(a, b)(Γ̂(b)− Γ̂(a))

= C(a, b)(Γ(b)− Γ(a))

= C(a, b)

∫ b

x=a

γ(x)gN(x)dx

=

∫ b

x=a

γ(x)gN−1(x)dx,

since γ(x) = γ(a) exp(x− a) and for n ≥ 1,∫ b

x=a

γ(x)gn(x)dx = γ(a) exp(−a)
xn

n!

∣∣∣∣b
x=a

= γ(a) exp(−a)
bn − an

n!
.

Lemma 9. The premium transfers are Lipschitz continuous in mi uniformly across m−i.
Moreover, they satisfy for all m

∇ · tp(m)− Σt
p
(m) = Ξ

p
(Σm),

where the derivative ∂t
p
i (m)/∂mi is defined by taking limits from the right.

Proof of Lemma 9. We can rewrite t
p
i as

t
p
i (m) =

1

N !

∑
ζ∈Z

∫ ∞
x=0

Ξ
p
(Σmζ<ζ(i) + x)gN−ζ(i)+1(x)dx

− 1

N !
exp(mi)

∑
ζ∈Z

∫ ∞
y=mi

∫ ∞
x=0

(
Ξ
p
(Σmζ<ζ(i) + x+ y

)
gN−ζ(i)(x)dx exp(−y)dy.

As a result, exp(−mi)t
p
i (m) is absolutely continuous and almost-everywhere differentiable

and

∂

∂mi

(
exp(−mi)t

p
i (m)

)
= − exp(−mi)

1

N !

∑
ζ∈Z

∫ ∞
x=0

Ξ
p
(Σmζ<ζ(i) + x)gN−ζ(i)+1(x)dx

+ exp(−mi)
1

N !

∑
ζ∈Z

∫ ∞
x=0

Ξ
p (

Σmζ≤ζ(i) + x
)
gN−ζ(i)(x)dx.

Thus,

∂t
p
i (m)

∂mi

= ti(m) +
1

N !

∑
ζ∈Z

∫ ∞
x=0

[
Ξ
p
(Σmζ≤ζ(i) + x)gN−ζ(i)(x)− Ξ

p
(Σmζ<ζ(i) + x)gN−ζ(i)+1(x)

]
dx.
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The above equation implies that
∂t

p
i (m)

∂mi
= 0 when mi =∞. Moreover, since t

p
i and Ξ

p
are

bounded, we conclude that t
p
i is Lipschitz continuous in mi uniformly across m−i.

Finally,

∇ · tp(m)− Σt
p
(m)

=
1

N !

∑
ζ∈Z

∫ ∞
x=0

N∑
i=1

[
Ξ
p
(Σmζ≤ζ(i) + x)gN−ζ(i)(x)− Ξ

p
(Σmζ<ζ(i) + x)gN−ζ(i)+1(x)

]
dx

= Ξ
p
(Σm)−

∫ ∞
x=0

Ξ
p
(x)gN(x)dx,

so the result follows from Lemma 8.

Lemma 10. For any information structure S and equilibrium β of (M,S), it must be
that ∫

S

∫
M

((w(s)− v)∇ · q(m)−∇ · tp(m))β(dm|s)π(ds) ≤ 0, (25)

where ∇ · q(0) ≡ µ(0).

This intuitive result corresponds to the fact that any equilibrium, local upward devi-
ations must not be attractive. If a bidder were to marginally increase all of the messages
they send in in equilibrium, the change in payoff would be∫

S

∫
M

(
(w(s)− v)

∂

∂mi

qi(m)− ∂

∂mi

t
p
i (m)

)
β(dm|s)π(ds) ≤ 0.

Summing across i gives (25). A technical complication is that the allocation sensitivity
may blow up as the aggregate message goes to zero. A rigorous proof is in Appendix A.

We can now complete the proof of Proposition 2.

Proof of Proposition 2. We have already argued in Lemma 5 that M is well-defined. To
complete the proof, it suffices to show that profit in any equilibrium in any information
structure is at least Π. This will be established in two steps.

Step 1: For any v and x,

λ(v) = λ(ŵ(x))−
∫ ŵ(x)

ν=v

µ(G−1
N (H(ν)))dν

≤ λ(ŵ(x))− (ŵ(x)− v)µ(x)

= (v − c)Q(x) + (v − v)µ(x)− Ξ
p
(x),

where the second line follows from the fact that µ is decreasing (Lemma 4), and the third
line follows from the definition of Ξ

p
.

Step 2: Fix an information structure S. Note that profit in an equilibrium β of (M,S)
is ∫

S

∫
M

(
(v − c)Q(Σm) + Σt

p
(m)

)
β(dm|s)π(ds).
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By Lemma 10 and Steps 1, this is at least∫
S

∫
M

(
(v − c)Q(Σm) + (w(s)− v)∇ · q(m)− (∇ · tpi (m)− Σt

p
(m))

)
β(dm|s)π(ds)

=

∫
S

∫
M

(
(v − c)Q(Σm) + (w(s)− v)µ(Σm)− Ξ

p
(Σm)

)
β(dm|s)π(ds)

≥
∫
S

λ(w(s))π(ds)

≥
∫
V

λ(v)H(dv).

The last line uses concavity of λ (Lemma 4), the fact that the distribution of w(s) is a
mean-preserving spread of H, and Jensen’s inequality. The final integral is equal to Π by
Lemma 7.

4.2.3 Truth-telling equilibrium

We now come to the last condition for (M,S, β) to be a strong maxmin solution.

Proposition 3. The truthful strategies β are an equilibrium of the game (M,S).

Proof of Proposition 3. Let

Ui(mi,m
′
i) =

∫
M−i

(
(w(mi + Σm−i)− v)qi(m

′
i,m−i)− t

p
i (m

′
i,m−i)

)
exp(−Σm−i) dm−i

denote the payoff from reporting m′i when the true signal is mi and when others report
truthfully. Since the signal of mi =∞ occurs with probability zero in S, we can assume
mi <∞.

From the definition of t
p
i and the fact that the unconditional expectation of Ξ

p
is zero,

we conclude that16∫
M−i

t
p
i (mi,m−i) exp(−Σm−i)dm−i = −

∫ ∞
x=0

Ξ
p
(x+mi)gN(x)dx. (26)

Next, note that when Σm−i = x,

qi(m
′
i,m−i) =

m′i
m′i + x

Q(m′i + x) = Q(m′i + x) +
x

N − 1
Q
′
(m′i + x)− x

N − 1
µ(m′i + x).

16This equation substantiates the claim in Section 3 that (12) is equivalent to incentive compatibility
of q on S. Using (11) and (12), we can rewrite the transfer as tpi (m) = −

∫∞
x=0

ξpi (mi +x,m−i) exp(−x)dx.
But if we take the expectation of ξpi (mi + x,m−i) over m−i, equation(12), combined with (9), implies
that the interim transfer is exactly (26). Moreover, when N = 2, the interim expected transfer can equal
(26) for all mi only if (12) holds as well. For more than two bidders, incentive compatibility of q on S is
equivalent to, for all i and mi,

∫
M−i

(ξpi (mi,m−i)− Ξ
p
(mi,m−i)) exp(−Σm−i)dm−i = 0.
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Integration by parts and the fact that g′N(x) = gN−1(x)− gN(x) yields the following:∫
M−i

(w(mi + Σm−i)− v)qi(m
′
i,m−i) exp(−Σm−i)dm−i

=

∫ ∞
x=0

(w(mi + x)− v)(Q(m′i + x)gN−1(x)− µ(m′i + x)gN(x))dx

+

∫ ∞
x=0

(w(mi + x)− v)Q
′
(m′i + x)gN(x)dx

=

∫ ∞
x=0

(w(mi + x)− v)(Q(m′i + x)gN−1(x)− µ(m′i + x)gN(x))dx

−
∫ ∞
x=0

Q(m′i + x) [(w(mi + x)− v)(gN(x)− gN−1(x))dx− gN(x)w(mi + dx)]

= −
∫ ∞
x=0

(w(mi + x)− v)µ(m′i + x)gN(x)dx

−
∫ ∞
x=0

Q(m′i + x)gN(x) [(w(mi + x)− v)dx− w(mi + dx)] .

Combining this expression with the one for interim transfers, and observing that γ(mi +
dx) = w(mi + dx), we conclude that

Ui(mi,mi)− Ui(mi,m
′
i)

=

∫ ∞
x=0

(w(mi + x)− v)(µ(m′i + x)− µ(mi + x))gN(x)dx

+

∫ ∞
x=0

(Q(mi + x)−Q(m′i + x))gN(x) [(w(mi + x)− v)dx− w(mi + dx)]

+

∫ ∞
x=0

(Ξ
p
(x+mi)− Ξ

p
(x+m′i))gN(x)dx

=

∫ ∞
x=0

[
(w(mi + x)− w(m′i + x))µ(m′i + x) + λ(ŵ(mi + x))− λ(ŵ(m′i + x))

]
gN(x)dx

+

∫ ∞
x=0

(Q(mi + x)−Q(m′i + x))gN(x) [γ(mi + x)dx− γ(mi + dx)] .

The integral in the second-to-last line is single peaked in m′i with a peak at m′i = mi,
since the integrand is equal to

w(mi + x)− w(m′i + x))µ(m′i + x) +

∫ mi+x

y=m′i+x

µ(y)ŵ(dy) = −
∫ mi+x

y=m′i+x

ŵ(y)µ(dy) (27)

where we have integrated by parts. By Lemma 4, µ is decreasing, so (27) crosses zero
once from above. For the last integral in the expression for the deviation payoff, recall
that by Lemma 3, γ(mi + x) − dγ(mi + x)/dx ≥ 0, and it is zero on graded intervals.
Thus, the integrand is non-zero only for those x at which the gains function is not graded
at mi + x, in which case Q(mi + x) = 1 ≥ Q(m′i + x). We conclude that the last integral
as non-zero as well, so that Ui(mi,mi)− Ui(mi,m

′
i) is non-negative for all m′i, and truth

telling is an equilibrium.
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Theorem 1 clearly follows from Propositions 1, 2, and 3.

4.3 The must-sell case

An important benchmark is the variant of our model where the Seller has to sell the good.
All of our existing tools carry over to the must-sell setting and almost immediately give
us the solution.

Let us define a must-sell mechanism to be one for which Q(m) = 1 for all m. A must-
sell strong maxmin solution is a triple (M,S, β) satisfying Conditions 1-3 in Section 2.5,
but whereM is a must-sell mechanism and Condition 2 only has to hold forM′ that are
must-sell mechanisms.

Now, consider the information structure Ŝ where the signals are i.i.d. and exponential
draws on R+, and the value function is ŵ, i.e., the fully-revealing value function. Also

consider the mechanism M̂ corresponding to the efficient proportional rule:

q̂i(m) =


1
N

if Σm = 0;
mi

Σm
if 0 < Σm <∞;

1
|{j|mj=∞}| if Σm =∞.

We define λ̂, Ξ̂p, t̂i, and t̂pi according to analogous formula as (16)–(19), using ŵ and
µ̂(x) = (N − 1)/x in place of w and µ. Let

Π̂ =

∫ ∞
x=0

γ̂(x)gN−1(x) dx. (28)

Finally, let β̂ denote the same truthful/obedient strategies as were part of our general
solution.

Theorem 2 (Must-sell solution). The triple (M̂, Ŝ, β̂) is a must-sell strong minmax so-

lution with a profit guarantee of Π̂ defined by (28).

Proof of Theorem 2. The proofs of Propositions 2 and 3 remain valid with γ̂ in place of
γ. Thus, the mechanism M̂ guarantees the Seller at least Π̂ in any equilibrium, and β̂ is
an equilibrium of the game (M̂, Ŝ).

The only place where our argument changes is in the proof of Proposition 1, where
we had to use Lemma 3 to conclude that the profit upper bound is maximized by setting
Q(x) = 1. In the must-sell case, this result is automatic. We therefore conclude that (28)

is an upper bound on profit in Ŝ.

We shall further explore welfare properties of must-sell mechanisms in Section 6.

4.4 The single-crossing case

We now discuss a class of distributions for which the maxmin mechanism is relatively
simple and there is a natural interpretation of the allocation rule. We say a distribution
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H is single-crossing if there is a cutoff x such that Γ̂ ◦ E−1 is convex on [0, x] and is
concave on [x,∞]. When the gains function is differentiable, this is equivalent to saying
that γ̂(x) − γ̂′(x), the virtual value, is single-crossing from below at x = x. This is in a
sense a counterpart to the regular case of Myerson (1981), where the Seller only has an
incentive to ration the good when signals are a below a cutoff.

If the distribution is single crossing, then Γ ◦ E−1 must be linear on [0, z∗] and it

coincides with Γ̂ ◦E−1 on [z∗,∞], for some z∗ ≥ E(x). Setting x∗ = E−1(z∗), the graded
gains function is

γ(x) =

{
γ(x∗) exp(x− x∗) x < x∗

γ̂(x) x ≥ x∗
.

As a result, on the graded interval [0, x∗], we have Q(x) = xC(0, x∗)/N = x/x∗, since
D(0, x∗) = 0. The maxmin allocation is therefore

qi(mi,m−i) =
mi

max{x∗,Σm}
.

We can interpret mi as bidder i’s nominal demand for the good and x∗ as the unit of the
demand, so mi/x

∗ is the demand in units of probability of being allocated the good. With
this interpretation, the allocation rule simply says that the bidders get their demands if
the aggregate demand is feasible (i.e., less than 1), and if the aggregate demand is not
feasible, then the good is rationed in proportion to the demands.

As an illustration, we now argue that the uniform distribution is single crossing for
all N . The fully-revealing gains function is γ̂(x) = GN(x) − c, which has a virtual value
GN(x)− c− gN(x). This is clearly zero when x = 0, and its derivative is

2gN(x)− gN−1(x) =

(
2x

N − 1
− 1

)
gN−1(x),

so that the virtual value is decreasing for x < (N − 1)/2 and increasing otherwise. This
implies that GN(x)− c− gN(x) crosses zero once, from below.

Thus, γ has an exponential shaped γ(0) exp(x) on [0, x∗], and is fully revealing above
x∗. For these to meet smoothly, it must be that γ(0) = exp(−x∗)(GN(x∗)− c). Moreover,
for the integrated gains functions to coincide at x∗, it must be that∫ x∗

x=0

(GN(x)− c)gN(x)dx =
(GN(x∗)− c)2

2

= exp(−x∗)(GN(x∗)− c)
∫ x∗

x=0

exp(x)gN(x)dx

= (GN(x∗)− c)gN+1(x∗).

Thus, the cutoff x∗ (uniquely) solves

GN(x∗)− c = 2gN+1(x∗).
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and maxmin profit is

Π =

∫ x∗

x=0

γ(0) exp(x)gN−1(x)dx+

∫ ∞
x=x∗

(GN(x)− c)gN−1(x)dx

= (GN(x∗)− c)gN(x∗) +

∫ ∞
x=x∗

(GN(x)− c)gN−1(x)dx,

while maxmin profit among must-sell mechanisms is only

Π̂ =

∫ ∞
x=0

(GN(x)− c)gN−1(x)dx.

These profit guarantees are compared for a range of N and for c = 0 in Figure 4, which
is discussed in Section 6.

5 Uniqueness of the Value

We have constructed a particular strong maxmin solution. We now argue that while there
may exist other solutions, as long as they are sufficiently well-behaved, they all must have
the same profit guarantee, which is Π.

Let us say that a mechanism is finite if the message spaces Mi are finite for all i.
We can identify the finite message sets with with subsets of N, so that the set of finite
mechanisms, denoted by MF , is well-defined. Similarly, an information structure is finite
if the signal spaces Si are finite for all i, and the set of finite information structures is SF .

An information structure S is regular if for all M ∈ MF , the game (M,S) has an
equilibrium. A mechanism M is regular if for all S ∈ SF , the game (M,S) has an
equilibrium. A solution (M,S, β) is regular if M and S are both regular.

Our first result for this section is the following:

Theorem 3 (Uniqueness). Every regular solution has a profit guarantee of Π.

The theorem follows from two propositions:

Proposition 4. For all ε > 0, there exists a finite mechanism M such that for every
information structures S and equilibrium β of (M,S), expected profit is at least Π− ε.

Proposition 5. For all ε > 0, there exists a finite information structure S such that for
every mechanism M and equilibrium β of (M,S), expected profit is at most Π + ε.

The proofs of these results are in Appendix B. As a function of ε, we construct a
finite mechanism or a finite information structure for which the profit bound holds. The
finite mechanisms are simply the restriction ofM to a grid of messages which are bounded
away from zero. The profit lower bounds are computed via a discrete analogue of the weak
duality argument of Proposition 2. As the lowest message and the space between messages
converge to zero, and as the largest message goes to infinity, this bound converges to Π.
For the information structures, we approximate the limit by essentially drawing signals
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from S and pooling signals which are in the same cell of a finite partition of Si. As the
partition becomes finer, an upper bound on profit (obtained via a discretized form of the
revenue equivalence theorem) converges to Π.

The next question is whether our solution is regular. The following theorem answers
in the affirmative.

Theorem 4 (Regularity). The solution (M,S, β) is regular.

The proof of this result is similarly relegated to Appendix B. For S, we simply verify
that the conditions for equilibrium existence in Milgrom and Weber (1985) are satisfied,
namely product-continuity of the signal distribution. For regularity of M, we verify
that the sufficient conditions in Reny (1999) are satisfied for the normal form of (M,S)
whenever S is finite. This is relatively straightforward, because the only discontinuities
in payoffs occur because the allocation rule jumps up in mi at m = 0 or it jumps up in mi

when mi = Σm−i =∞. Only the first of these leads to a failure of lower semi-continuity of
the allocation, and since transfers are continuous, bidders can protect themselves against
this discontinuity by replacing the zero message with a small positive message.

Thus, all regular strong maxmin solutions have the same profit guarantee, and the
strong maxmin solution we construct is itself regular. This justifies the styling ofM as a
maxmin mechanism and of S as a minmax information structure, which we now formalize
as two corollaries.

Corollary 1. Let M be a set of regular mechanisms which containsM, and fix a selection
β∗(M,S) from the (non-empty) equilibrium correspondence B on M×SF . ThenM solves

max
M∈M

inf
S∈SF

Π(β∗(M,S),M,S).

Corollary 2. Let S be a set of regular information structures which contains S, and fix
a selection β∗(M,S) from the (non-empty) equilibrium correspondence B on MF × S.
Then S solves

min
S∈S

sup
M∈MF

Π(β∗(M,S),M,S).

These corollaries follow from the observations that Π bounds the solution to these
problems (Propositions 4 and 5), and the bound is attained byM and S (Propositions 1
and 2).

We note that the arguments for Theorems 3 and 4 and Corollaries 1 and 2 are easily
adapted to the must-sell case, without any qualifications. We comment further on this
after the proofs in the Appendix.

6 Maxmin auctions in the many-bidder limit

6.1 Profit comparison

In this section, we will further explore the properties of the maxmin auction and the
optimal profit guarantee. We begin with a comparison of mechanisms for the standard
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Figure 4: Comparing the maxmin mechanism to other auctions.

uniform distribution with c = 0. The optimal profit guarantees for this example was
computed in Section 4.4. In Figure 4, we have plotted these optimal guarantees for N
ranging from 1 to 30.17 The can-keep and must-sell guarantees are the dots and circles,
respectively.

For comparison, we have also plotted profit guarantee of the first-price auction, as
computed by Bergemann, Brooks, and Morris (2017), which is the gray dots. This turns
out to be (N − 1)/(4N − 2) for the standard uniform distribution. We also plot as a solid
black line the best guarantee from a posted price mechanism, which is 1/8 and is obtained
with a price of 1/4.18

A striking feature of this picture is that the optimal profit guarantee increases in N
and appears to be converging towards 0.5. The latter is the ex ante expected value, which
is obviously an upper bound on profit in any mechanism. In fact, as N goes to infinity,
the profit guarantee converges to the expected surplus. This remarkable fact is implied
by the earlier result of Du (2018), who constructed a particular sequence of mechanisms
and profit guarantees (the white diamonds) which converge to total surplus. A fortiori,
the optimal profit guarantee must also converge to total surplus.

For the rest of this section, we explore and extend this result in a number of ways.
We generalize the bound to the case where the Seller has a positive cost, and we argue
that the correct limit profit is the ex ante gains from trade. We also characterize the rate
at which the bound is attained, and we show that the limit is attained even with must-
sell mechanisms. Finally, and perhaps most surprisingly, we will argue that asymptotic
full surplus extraction holds even if the distribution of the value is misspecified. As an
illustration, the black asterisks in Figure 4 are a profit guarantee for the maxmin auction

17A similar figure previously appeared in Du (2018).
18The worst-case information is when bidders learn publicly whether the value is below 1/2. If it is

below 1/2, none of them buy, and if it is above, they strictly prefer to purchase.
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that is calibrated to an exponentially distributed value but when the value is actually
standard uniform.19

6.2 Information and welfare in the many-bidder limit

We now proceed formally. Before presenting our results, we have to address the left-
tail condition on the value distribution introduced in Section 2. This assumption was
only made for a single N , whereas now we will study the limit as N goes to infinity. It
turns out, however, that no additional assumption is needed. The left-tail condition could
equivalently be stated as

lim sup
α→0

H−1(α)− v
(G−1

N (α))ϕ
<∞,

for some ϕ > 1. But since GN is decreasing in N in the first-order stochastic dominance
order, G−1

N is increasing, so that for all α and N ′ > N ,

H−1(α)− v
(G−1

N (α))ϕ
≥ H−1(α)− v

(G−1
N ′ (α))ϕ

,

so that the left-tail condition is satisfied for all N ′ > N as well.
With this clarification out of the way, we can proceed with characterizing the limiting

profit guarantee. We now denote the optimal profit guarantees for the can-keep and must-
sell models by ΠN(H) and Π̂N(H), respectively, where we now emphasize their dependence
on the number of bidders and the distribution. Implicitly, as we vary the number of
bidders, we hold fixed the other parameters of the model, namely the distribution H and
the cost c.

Note that a simple upper bound on the profit guarantee that holds for all N is the ex
ante gains from trade. For it could be that the bidders have no information about the
value at all, in which case the best the Seller can do is make the bidders a take-it-or-leave-
it offer at a price equal to the ex ante expected value. The following proposition argues
that this upper bound is tight:

Proposition 6 (Limiting profit guarantee). In the limit as N goes to infinity, the profit

guarantees ΠN(H) and Π̂N(H) converge to the ex ante gains from trade at a rate of 1/
√
N .

The formal proof is non-trivial and is in Appendix C. We will here provide some intu-
ition. Recall that at the minmax information structure, the aggregate signal is a sufficient
statistic for the value. Since the signals are independent and identically distributed, the
law of large numbers suggests that when N is large, there distribution of the aggregate

19Strictly speaking, we have assumed that the support of H is bounded, which is violated with the
exponential distribution. In this calculation, we have taken the limit of the formulae for bounded distri-
butions. We expect that our formal results can be extended to cover unbounded distributions for which
the right tail is not too heavy, such as the exponential.
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signal, appropriately scaled, is concentrated around the mean. To be more precise, we
can change the units of each bidder’s signal according to20

sCi =
si − 1√
N

,

where the “C” denotes a central limit normalization. The centered aggregate signal is
then

x = ΣsC =
Σs−N√

N

which has cumulative distribution and probability density functions

GC
N(x) = GN(

√
Nx+N)

gCN(x) =
√
NgN(

√
Nx+N),

respectively. We can correspondingly center the value function as wCN(x) = wN(
√
Nx+N),

etc, where we now emphasize the dependence of w and other objects on N .
With this normalization, the distribution of the aggregate signal will converge to a

standard Normal with distribution and density denoted Φ and φ, respectively. We argue
in Appendix C that the normalized fully-revealing gains function converges almost surely
to γ̂C∞(x) = H−1(Φ(x)), which is just a change of units from γ̂N , and the graded gains
function converges almost surely to

γC∞(x) =

{
0 if x < x∗;

H−1(Φ(x)) if x ≥ x∗,

where x∗ is the largest x such that

0 =

∫ x

y=−∞
γ̂C∞(y)φ(y)dy.

Note that x∗ will be −∞ if v − c > 0 with probability one. Thus, in the limit, there is
only grading at the bottom, and then only if there is positive probability that the gains
from trade are non-positive.

At the same time, with the change of units, the hazard rate of each bidder’s signal has
changed from 1 to

√
N . When N is large, the bidders’ virtual value will be approximately

γC∞(x)− 1√
N

d

dx
γC∞(x).

In effect, each bidder’s individual contribution to collective information about the value
becomes vanishingly small as the number of bidders grows large. Each bidder’s informa-
tion rents must correspondingly go to zero as well. Since only the bidder who is allocated

20The discussion here uses the standard central limit normalization. In Appendix C, we use a different
but asymptotically normalization where sci = (si− (N −1)/N)/

√
N − 1. This turns out to be much more

analytically convenient, as in the proof of Lemma 16.
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the good gets an information rent, we conclude that total bidder surplus goes to zero at
a rate of 1/

√
N . At the same time, it is always weakly optimal for the Seller to allocate

the good, so that profit converges to the ex ante gains from trade.
This sketch glosses over some technical complications. The convergence of the gains

function is only almost everywhere, and along the sequence of minmax information struc-
tures the hazard rate and the graded gains function are both changing. The formal proof
deals with these issues by working directly with the integral for the difference between ex
ante gains from trade and profit, scaled up by

√
N . We argue that this sequence converges

to a positive constant, thus establishing the proposition.

6.3 Robustness to the prior

We have assumed that the Seller does not know the information structure but knows the
value distribution exactly. There is a clear tension here. It turns out, however, that our
results are robust to misspecification of the prior, as we now explain.

Let us suppose that the Seller runs the mechanismMN(H) that provides the optimal
profit guarantee when the prior is H, where we now emphasize the dependence on both
N and H. Let λN(v;H) denote the associated optimal dual multipliers given by (19). We
established in the proof of Proposition 2 that a lower bound on profit is the expectation of
λN(v;H). But in that dual argument, the prior H only appears at the last step as a mean-
preserving spread of the distribution of w(s). As a result, even if the prior is some H ′ 6= H,
we still obtain a lower bound on profit, which is the expectation of λN(v;H) under H ′.
But since λN(v;H) is bounded and continuous, the change in the profit guarantee will be
small as long as H and H ′ are close in the weak-∗ topology. This gives us the following
result:

Proposition 7 (Profit guarantee for misspecified prior). In any equilibrium of MN(H)
for any information structure where the value distribution is H ′, expected profit is bounded
below by

ΠN(H,H ′) =

∫ v

v=0

λN(v;H)H ′(dv),

which is a linear and weak-∗ continuous function of H ′.

Proposition 7 says that when the prior is only slightly misspecified, the loss in the
profit guarantee will be small. If the prior is badly misspecified, however, the loss can be
substantial. But when the number of bidders is large, the loss from misspecification is
vanishingly small and the profit guarantee will still be approximately the ex ante gains
from trade, even if the prior is badly misspecified. This is formalized in the following
result:

Proposition 8 (Prior-independent limiting profit guarantee). Suppose the support of H ′

is a subset of the convex hull of the support of H. In the limit as N goes to infinity,
ΠN(H,H ′) converges to the ex ante gains from trade under H ′.
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In the case when c ≤ v, this result is essentially a consequence of Propositions 6 and
7. To see why, consider what would happen if the Seller ran MN(H) but the true prior
puts probability one on a particular value v. Proposition 7 says that profit must be at
least λN(v;H). At the same time, profit in this counterfactual cannot be greater than
v−c, which is the efficient surplus. But Proposition 6 says that expected profit guarantee
under H converges to the ex ante gains from trade, which is only possible if λN(v;H)
converges to v − c H-almost surely.

This argument establishes Proposition 8 if H ′ is absolutely continuous with respect
to H and there is common knowledge of gains from trade. The result is much stronger.
In Appendix C, we show that λN(v) converges pointwise to v − c for all v in the convex
hull of the support of H, even on the boundary, and even when there is not common
knowledge of gains from trade.

Note that while the profit guarantee converges to the ex ante gains from trade under the
true prior H ′, that guarantee need not be positive. Thus,MN(H) may not be a maxmin
mechanism in the many-bidder limit, in the event that the optimal profit guarantee is
zero and it is better to shut down production entirely.

We also note that analogues of Propositions 7 and 8 also hold for the must-sell model.
The necessary modifications to the proof are minor, which we explain after the proof in
Appendix C.

To summarize, the maxmin mechanisms that are optimal for finite N are unimprovable
for large N . This is true even if the Seller knows nothing about the value distribution
beyond bounds on its support. While we have assumed that the support of H is bounded
for technical convenience, we do not foresee any significant conceptual issues in extending
our results as long as the right tail of H is not too heavy. Thus, if one uses the maxmin
mechanism for a distribution with full support on R+, e.g., H(v) = 1 − exp(−v) as in
Figure 4, pointwise convergence of the profit guarantee to ex ante gains from trade will
hold for all H ′.

7 Conclusion

This paper has studied the canonical auction design problem when values are common.
The novelty is to use a robust criterion for measuring the performance of an auction. The
spirit of the exercise is to identify mechanisms that are less vulnerable to misspecification
of information and behavior and are therefore more viable for practical implementation,
where a designer may be unwilling or unable to commit to a specific description of infor-
mation.

The literature to which we contribute has previously shown that it is possible to
obtain non-trivial profit guarantees across all information structures and equilibria, even
with standard mechanisms like the first-price auction. It has also shown that there are
mechanisms whose profit guarantees are unimprovable when the number of bidders is
large. Our marginal contribution is to establish, in a rich class of environments, the
precise limit of what can be attained. We have also developed new methodological insights
for the characterization of maxmin mechanisms, namely the double revelation principle
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and the critical conditions on aggregate allocation sensitivity and the aggregate excess
growth. In terms of the solution itself, we have shown that the optimal guarantee can
be attained with mechanisms that have a simple one-dimensional bidding interface. The
analysis also suggests that simple allocation rules, where bidders demand shares of the
good and then receive allocations that proportional to their demands, can perform quite
well. The transfer rules we derive are less transparent. But we feel that as a whole, the
maxmin mechanisms are much closer to meeting practical constraints on implementation
than are, say, mechanisms that ask the agents to report signals in an abstract information
structure or to report their beliefs and higher-order beliefs.

To our knowledge, the auctions we construct are new to the literature. We are also
unaware of any similar auctions which are used in practice. We therefore view our con-
tribution as normative in nature. The advantage of our approach is that it stays within
the Bayesian auction design framework, broadly defined, but allows us to remedy some
conceptual and practical limitations associated with having to commit to a specific infor-
mation structure.

To be sure, this modeling approach introduces new conceptual issues: Why should the
bidders have common knowledge of the information structure, while the Seller does not?
Why does the Seller not simply induce the bidders to reveal the information structure,
and then run the optimal auction for whatever information structure they report? While
this is clearly a theoretical possibility, such an approach runs contrary to the spirit of our
exercise, which is to identify auctions with desirable welfare properties that will remain
feasible when we respect both the designer and the agents’ limited ability to articulate and
communicate their beliefs and higher-order beliefs. We have not imposed such constraints
explicitly in our model. But to us, the value of the model is not just in its assumptions,
but also in the nature of the results: mechanisms that have desirable welfare properties
but are also low-dimensional, so that there is hope that they will remain feasible even if
additional practical constraints are imposed. As for the common prior among the agents,
this assumption is obviously controversial, but we find it relatively palatable as an as-if
description of agents’ behavior, as long as it does not need to be explicitly input into the
mechanism design black box in order to compute the optimal mechanism.

Nonetheless, it is true that in distancing ourselves from the untenable knowledge
assumptions of the standard model, we have taken an equally extreme position, which
is that the designer puts no restrictions on information except for the prior on the value
and the existence of a common prior. Verily, the truth must lie somewhere in between.
Designers may be willing to rule out some models without committing themselves to a
single description of the world. We expect the theory to become even more useful as
we explore the middle ground between these two extremes, by incorporating reasonable
restrictions on beliefs into the robust mechanism design problem.
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A Omitted Proofs for Section 4

Proof of Lemma 1. Recall the characterization of mean-preserving spreads in terms of
orderings of integrated cumulative distributions in equation (2). We will show that (20)
holds for all α if and only if (2) holds for all x. Define the graph

Gr(F ) ={(x, α) : x ≥ 0, α ∈ [F (x−), F (x)]}

for a cumulative distribution F , where F (x−) is the left-limit of F at x.
Note that for any (x, α) ∈ Gr(F1),∫ x

y=0

F1(y) dy = x · α−
∫ α

y=0

F−1
1 (y) dy,

and similarly for F2. As a result, if Gr(F1) and Gr(F2) cross each other at (x, α), i.e.,
(x, α) ∈ Gr(F1) ∩Gr(F2), then (20) and (2) are equivalent.

Now consider an interval (x, x) where F1(x−) > F2(x) for all x ∈ (x, x), and

[F1(x−), F1(x)] ∩ [F2(x−), F2(x)] = [α′, α] 6= ∅,
[F1(x−), F1(x)] ∩ [F2(x−), F2(x)] = [α′, α] 6= ∅.

Then F−1
1 (α) > F−1

2 (α) for all α ∈ (α, α′). Thus, the integrals on the left-hand sides of
(20) and (2) are strictly increasing in x ∈ (x, x) and α ∈ (α, α′), respectively. Therefore,
if (20) holds at α = α, then (20) holds every α ∈ (α, α′); and if (2) holds at x = x, (2)
holds for every x ∈ (x, x).

The case where F1(x) < F2(x−) on (x, x) is analogous and is omitted.

To prove Lemma 10, we need the following technical result:

Lemma 11. For all x, |Q′(x)| ≤ (N − 1)/x and if Σm = x, then∣∣∣∣ 1

∆
(qi(mi + ∆,m−i)− qi(m))

∣∣∣∣ ≤ N + 1

x
.

Proof of Lemma 11. Note that

Q
′
(x) =

C(a, b)

N
− (N − 1)D(a, b)

xN
.

From equation (22), this is at most 1/x when we replace C(a, b) with the bound in equation
(22) and set D(a, b) = 0. Moreover, since C(a, b) ≥ 0 and

D(a, b) =
bN − abN−1

bN − aN
aN−1 ≤ aN−1 ≤ xN−1, (29)

we conclude that Q
′

is at least −(N − 1)/x, so |Q′(x)| ≤ (N − 1)/x.
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Next, observe that∣∣∣∣ 1

∆
(qi(mi + ∆,m−i)− qi(m))

∣∣∣∣
=

∣∣∣∣ 1

∆

(
mi + ∆

Σm+ ∆
Q(Σm+ ∆)− mi

Σm
Q(m)

)∣∣∣∣
=

∣∣∣∣ 1

∆

(
mi

Σm+ ∆
(Q(Σm+ ∆)−Q(Σm)) +

∆

Σm+ ∆
Q(Σm+ ∆) +

(
mi

Σm+ ∆
− mi

Σm

)
Q(m)

)∣∣∣∣
≤
∣∣∣∣mi

∆

Q(Σm+ ∆)−Q(m)

Σm+ ∆

∣∣∣∣+

∣∣∣∣Q(Σm+ ∆)

Σm+ ∆

∣∣∣∣+

∣∣∣∣ mi

Σm(Σm+ ∆)
Q(Σm)

∣∣∣∣
≤ mi

∆

∆N−1
x

Σm+ ∆
+

2

Σm
leq

N + 1

x
.

where the last line follows from the facts that Q
′
(x) ≤ (N − 1)/x and Q(x) ≤ 1.

Proof of Lemma 10. Fix an information structure S and an equilibrium β of (M,S).
Since strategies are an equilibrium, for all i and ∆ > 0,∫
S

∫
M

[
(w(s)− v)

qi(mi + ∆,m−i)− qi(m)

∆
− t

p
i (mi + ∆,m−i)− t

p
i (m)

∆

]
β(dm|s)π(ds) ≤ 0.

(30)

The following argument essentially sums this equation across i and takes a particular
sequence ∆k → 0 to argue that the inequality remains valid when we replace the discrete
differences with the corresponding divergences.

Let us first consider the allocation. For every x > 0, Lemma 11 implies that if
Σm > x, (qi(mi + ∆,m−i) − qi(m))/∆ is bounded below by −(N + 1)/x. Let us define

M
x+

= {m ∈ M |Σm > x}. Fatou’s Lemma therefore implies that for every ε > 0, there

is a ∆̂ > 0 such that if ∆ < ∆̂,∫
S

∫
M

x+
(w(s)− v)

N∑
i=1

qi(mi + ∆,m−i)− qi(m)

∆
β(dm|s)π(ds) + ε

≥ lim inf
∆′→0

∫
S

∫
M

x+
(w(s)− v)

N∑
i=1

qi(mi + ∆′,m−i)− qi(m)

∆′
β(dm|s)π(ds)

≥
∫
S

∫
M

x+
(w(s)− v)∇ · q(m)β(dm|s)π(ds),

for every ∆ ≤ ∆̂.
As x→ 0, the non-negative integrand IΣm>x(v − v)∇ · q(m) converges monotonically,

so the monotone convergence theorem implies that

lim
x→0

∫
S

∫
M

x+
(w(s)− v)∇ · q(m)β(dm|s)π(ds)

=

∫
S

∫
M

0+
(w(s)− v)∇ · q(m)β(dm|s)π(ds).
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On the other hand, the integrand
(∑N

i=1 IΣm>x(qi(mi + ∆)− qi(m))/∆
)
β(dm|s)π(ds)

is bounded by the integrable function N/∆β(dm|s)π(ds). The dominated convergence
theorem then implies that

lim
x→0

∫
S

∫
M

x+
(w(s)− v)

N∑
i=1

qi(mi + ∆,m−i)− qi(m)

∆
β(dm|s)π(ds)

=

∫
S

∫
M

0+
(w(s)− v)

N∑
i=1

qi(mi + ∆,m−i)− qi(m)

∆
β(dm|s)π(ds)

We conclude that for every ε > 0, there exists a ∆̂ > 0 such that for every ∆ ≤ ∆̂,∫
S

∫
M

0+
(w(s)− v)

N∑
i=1

qi(mi + ∆,m−i)− qi(m)

∆
β(dm|s)π(ds) + ε

≥
∫
S

∫
M

0+
(w(s)− v)∇ · q(m)β(dm|s)π(ds).

(31)

Next, if there is a graded interval of the form [0, b], b > 0, then any sequence ∆k → 0
satisfies

lim
k→∞

N∑
i=1

qi(∆k, 0)− qi(0)

∆k

=
N

b
= ∇ · q(0).

Otherwise, if there is no graded interval at 0, then we can find a sequence ∆k → 0 such
that the gains function is not graded at ∆k. Thus, Q(∆k) = 1 = qi(∆k, 0), so that

lim
k→∞

N∑
i=1

qi(∆k, 0)− qi(0)

∆k

=∞ = ∇ · q(0).

Letting M
0

= {m ∈M |Σm = 0}, we therefore have∫
S

∫
M

0
(w(s)− v)∇ · q(m)β(dm|s)π(ds)

= lim
k→∞

∫
S

∫
M

0
(w(s)− v)

N∑
i=1

qi(∆k, 0)− qi(0)

∆k

β(dm|s)π(ds).

In addition, equation (31) implies that∫
S

∫
M

0+
(w(s)− v)∇ · q(m)β(dm|s)π(ds)

≤ lim inf
k→∞

∫
S

∫
M

0+
(w(s)− v)

N∑
i=1

qi(mi + ∆k,m−i)− qi(m)

∆k

β(dm|s)π(ds).
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Putting these two together, we conclude that∫
S

∫
M

(w(s)− v)∇ · q(m)β(dm|s)π(ds)

≤ lim inf
k→∞

∫
S

∫
M

(w(s)− v)
N∑
i=1

qi(mi + ∆k,m−i)− qi(m)

∆k

β(dm|s)π(ds).

(32)

Next, from Lemma 9, we know that ∂t
p
i /∂mi and (t

p
i (mi + ∆k,m−i)− t

p
i (m))/∆k are

both bounded. The dominated convergence theorem then implies that

lim
k→∞

N∑
i=1

∫
S

∫
M

t
p
i (mi + ∆k,m−i)− t

p
i (m)

∆k

β(dm|s)π(ds)

=

∫
S

∫
M

∇ · tpi (m) β(dm|s)π(ds).

(33)

The lemma then follows from taking the limit of of (30) evaluated at ∆k as k →∞, using
(32) and (33).

Lemma 12. There exists a ∆̂ such that for all ∆ < ∆̂ and x ∈ R+,

γ(x)

[
gN(x) +

gN(x)− gN(x−∆)

exp(∆)− 1

]
≤

{
γ(x)(gN(x) + 1) if x < 1;

γ(x)[gN(x) + 2vgN−1(x)] if x ≥ 1.

This bounding function is integrable.

Proof of Lemma 12. If x ≥ ∆,

gN(x)− gN(x−∆)

exp(∆)− 1
=

exp(−x)

(N − 1)!

xN−1 − (x−∆)N−1 exp(∆)

exp(∆)− 1

≤ exp(−x)

(N − 1)!

xN−1 − (x−∆)N−1

exp(∆)− 1

≤ exp(−x)

(N − 1)!
(N − 1)xN−2 ∆

exp(∆)− 1

= gN−1(x)
∆

exp(∆)− 1
,

where the third to last line follows from convexity of xN−1, so xN−1 − (x − ∆)N−1 ≤
(N − 1)xN−2∆. Since ∆/(exp(∆) − 1) → 1 as ∆ → 0, we can take ∆̂ small enough so

that for ∆ < ∆̂, the ratio is less than 2. Also, as long as ∆ < N − 1, gN is increasing for
x ∈ [0,∆], so that for x in this range

gN(x)− gN(x−∆)

exp(∆)− 1
≤ gN(∆)

exp(∆)− 1

which converges to zero pointwise.
Integrability follows from the fact that γ(x) is bounded by v.
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B Proofs for Uniqueness and Regularity

B.1 Proof of Proposition 4

Before proving Proposition 4, we establish two technical results. Define the functions

hζn(m) =

∫ ∞
x=0

Ξ
p
(Σmζ≤n + x)gN−n+1(x)dx

h̃ζn(m) =

∫ ∞
x=0

Ξ
p
(Σmζ≤n + x)gN−n(x)dx

Lemma 13. For every n ≤ N , hζn(m) is Lipschitz continuous in mi, uniformly across
m−i. If n < N , then h̃ζn(m) is Lipschitz in mi, uniformly across m−i, as well.

Proof of Lemma 13. First, if ζ(i) > n then hζn(m) is invariant to mi. Otherwise,

hζn(m) =

∫ ∞
x=0

Ξ
p
(Σmζ≤n + x)gN−n+1(x)dx

= exp(mi)

∫ ∞
y=mi

∫ ∞
x=0

Ξ
p
(Σmζ(−i)≤n + x+ y)GN−n(dx) exp(−y)dy

where G0 is a Dirac measure on 0. Thus,

∂

∂mi

(exp(−mi)h
ζ
n(m)) = − exp(−mi)

∫ ∞
x=0

Ξ
p
(Σmζ≤n + x)GN−n(dx)

so

∂

∂mi

hζn(m) =

∫ ∞
x=0

Ξ
p
(Σmζ≤n + x)(gN−n+1(x)dx−GN−n(dx)).

Clearly the right-hand side is bounded above by 2L, where L is a bound on Ξ
p
, which

proves the result.
Finally, all of the arguments are the same with h̃ζn as long as N − n > 0.

Lemma 14. If mi ≥ m, then

∂

∂mi

t
p
i (m) ≥ −N − 1

m
.

Proof of Lemma 14. Note that if Ξ
p
(x) is increasing, then it is because Q(x) is decreasing,

which has a derivative bounded by (N − 1)/m from Lemma 11. A simple integration by
parts, together with the fact that gN−n+1(0) = 0, yields

∂

∂mi

hζn(m) =

∫ ∞
x=0

gN−n(x)Ξ
p
(Σmζ≤n + dx)

≤
∫ ∞
x=0

gN−n(x)
N − 1

m
dx =

N − 1

m
.
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Thus,

∂

∂mi

t
p
i (m) = − 1

N !

∑
ζ∈Z

∂

∂mi

hζζ(i)(m) ≥ −N − 1

m
.

Proof of Proposition 4. We will use the following discrete mechanismM, which implicitly
depends on parameters m > 0 and ∆ > 0. We choose ∆ = 1/

√
K for some positive integer

K, and the message space is

Mi = {m,m+ ∆, . . . ,m+K∆}.

Note that the highest message m is at least ∆−1. We retain the base payment of vqi(m),
the premium is

tpi (m) = t
p
i (m)− tpi (m,m−i) + t

p
i (0,m−i).

and the allocation is qi(m) = qi(m). It is clear that this is a well-defined mechanism and
that participation security is satisfied.

The discrete aggregate allocation sensitivity is

µ(m) =
1

∆

N∑
i=1

Imi<m(qi(mi + ∆,m−i)− qi(m)),

and the discrete premium total excess growth is

Ξp(m) =
1

∆

N∑
i=1

Imi<m(ti(mi + ∆,m−i)− ti(m))− Σt(m).

Now, define

λ(m; v) = (v − v)µ(m)− Ξp(m) + (v − c)Q(Σm),

and let λ(v) = minm∈M λ(m; v).
Next, we will use the following result:

Claim 1. For all information structures S and equilibria β of (S,M), expected profit is
at least

∫
v
λ(v)H(dv).

Proof of Claim 1. The equilibrium hypothesis implies that for all i,∫
S

∑
m∈M

[
(w(s)− v)(qi(min{mi + ∆,m},m−i)− qi(m))

− (ti(min{mi + ∆,m},m−i)− ti(m))
]
β(m|s)π(ds) ≤ 0,
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which corresponds incentive constraint for deviating to min{mi+∆,m}. Summing across
bidders, and dividing by ∆, we conclude that∫

S

∑
m∈M

((w(s)− v)µ(m)− Ξp(m)− Σtp(m))β(m|s)π(ds) ≤ 0.

Hence, expected profit is∫
S

∑
m∈M

(Σtp(m) + (v − c)Q(Σm)) β(m|s)π(ds)

≥
∫
S

∑
m∈M

(Σtp(m) + (v − c)Q(Σm) + (w(s)− v)µ(m)− Ξp(m)− Σtp(m))) β(m|s)π(ds)

=

∫
S

∑
m∈M

((w(s)− v)µ(m)− Ξp(m) + (v − c)Q(Σm)) β(m|s)π(ds)

≥
∫
S

λ(w(s))π(ds)

≥
∫
V

λ(v)H(dv),

where the last line follows from the mean-preserving spread condition on w(s) and that
λ is concave, being the minimum of linear functions.

The rest of the argument shows that there exists an m > 0 and ∆ > 0 such that
λ(v) ≥ λ(v)− ε for all v, which will prove the proposition.

Claim 2. For all m ∈M ,

µ(m) ≥ 1

∆

∫ ∆

y=0

µ(Σm+ y)dy − N + 1

m

− N(N − 1)

∆

(
log(Nm+ ∆) +

Nm

Nm+ ∆
− log(Nm)− 1

)
.

For fixed m > 0, all terms on the right-hand side except the integral go to zero as ∆→ 0.

Proof of Claim 2. From Lemma 11, we know that

µ(m) =
N∑
i=1

1

∆
(qi(mi + ∆,m−i)− qi(m))−

N∑
i=1

Imi=m
1

∆
(qi(mi + ∆,m−i)− qi(m))

≥
N∑
i=1

1

∆
(qi(mi + ∆,m−i)− qi(m))− N + 1

m
.

x Recall that

µ(x) =
N − 1

x
Q(x) +Q

′
(x).
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Also recall that

∂qi(mi)

∂mi

=
Σm−i
(Σm)2

Q(Σm) +
mi

Σm
Q
′
(Σm).

Thus,

N∑
i=1

1

∆
(qi(mi + ∆,m−i)− qi(m))

=
1

∆

N∑
i=1

∫ ∆

y=0

∂qi(mi + y,m−i)

∂mi

dy

=
1

∆

N∑
i=1

∫ ∆

y=0

[
Σm−i

(Σm+ y)2
Q(Σm+ y) +

mi + y

Σm+ y
Q
′
(Σm+ y)

]
dy

=
1

∆

∫ ∆

y=0

[
(N − 1)Σm

(Σm+ y)2
Q(Σm+ y) +

Σm+Ny

Σm+ y
Q
′
(Σm+ y)

]
dy

=
1

∆

∫ ∆

y=0

µ(Σm+ y)dy − N − 1

∆

∫ ∆

y=0

y

Σm+ y

[
Q(Σm+ y)

Σm+ y
−Q′(Σm+ y)

]
dy.

We need to bound the last integral from below. If x is in a non-graded interval, then
Q(x)/x−Q′(x) is just 1/x. If x is in a graded interval [a, b], then

Q(x)

x
−Q′(x) =

C(a, b)

N
+
D(a, b)

xN
− C(a, b)

N
+ (N − 1)

D(a, b)

xN
=
ND(a, b)

xN
.

From equation (29), D(a, b) ≥ xN , so that the integrand in this case is at most N/x, and∫ ∆

y=0

y

x+ y

[
Q(x+ y)

x+ y
−Q′(x+ y)

]
dy ≤ N

∫ ∆

y=0

y

(x+ y)2
dy

=

∫ ∆

y=0

(
1

x+ y
− x

(x+ y)2

)
dy

= N

(
log(x+ ∆) +

x

x+ ∆
− log(x)− 1

)
.

The derivative with respect to x is

1

x+ ∆
− 1

x
+

∆

(x+ ∆)2
= ∆

(
1

(x+ ∆)2
− 1

x(x+ ∆)

)
which is clearly negative, so subject to x ≥ Nm, the expression is maximized with x =
Nm, which gives us the lower bound on µ.

Moreover, as ∆→ 0, (N + 1)/m→ 0, and by L’Hôpital’s rule,

lim
∆→0

(
log(Nm+ ∆) + Nm

Nm+∆
− log(Nm)− 1

∆

)
= lim

∆→0

(
1

Nm+ ∆
− Nm

(Nm+ ∆)2

)
= 0.

This completes the proof.
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Claim 3. Let L be a Lipschitz constant for t
p
i (m) and hζn(m). Then

Ξp(x) ≤ 1

∆

∫ ∆

y=0

Ξ
p
(Σm+ y)dy +N ((3∆ +m)L+ (N − 1)∆) .

Proof of Claim 3. Let ei denote the vector which has a one in the ith coordinate and zero
everywhere else. We can rewrite the discrete difference in the premium as

tpi (mi + ∆,m−i)− tpi (m) = − 1

N !

∑
ζ∈Z

(hζζ(i)(m+ ei∆)− hζζ(i)(m))

= − 1

N !

∑
ζ∈Z

∫ ∆

y=0

∂

∂mi

hζζ(i)(m+ eiy)dy

= − 1

N !

∑
ζ∈Z

∫ ∆

y=0

(hζζ(i)(m+ eiy)− h̃ζζ(i)(m+ eiy))dy

≤ − 1

N !

∑
ζ∈Z

∫ ∆

y=0

(hζζ(i)(m+ y/N)− h̃ζζ(i)(m+ y/N))dy + 2L∆2

= −
∫ ∆

y=0

∂

∂mi

t
p
i (m+ y/N)dy + 2L∆2

where we have used the fact that hζζ(i) and h̃ζζ(i) are Lipschitz continuous, the latter when

ζ(i) < N , and h̃ζN(m+ eiy) = h̃ζN(m+ y/N) = Ξ
p
(Σm+ y). Also, Lipschitz continuity of

t
p
i gives ∣∣∣∣tpi (m)− 1

∆

∫ ∆

y=0

t
p
i (mi + y,m−i)dy

∣∣∣∣ ≤ L∆ +mL.

In addition, from Lemma 14 we can conclude that if mi = m ≥ ∆−1,

1

∆

∫ ∆

y=0

∂

∂mi

t
p
i (m+ y/N)dy + (N − 1)∆ ≥ 0.

Combining these expressions, we conclude that

Ξp(m) ≤
N∑
i=1

[
1

∆

∫ ∆

y=0

(
∂

∂mi

t
p
i (m+ y/N)− tpi (m+ y/N)

)
dy + (3∆ +m)L+ (N − 1)∆

]
which is the bound in the statement of the claim.

We can now prove the proposition. We first argue that there exists a ∆ > 0 such that
λ(m; v) ≥ λ(m; v)− ε for all m ∈M and v ∈ [v, v], where

λ(m; v) = (v − v)µ(Σm)− Ξ
p
(Σm) + (v − c)Q(Σm).
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From Lemma 11, we know that |Q(x+ y)−Q(x)| ≤ y(N − 1)/m. Thus,∣∣∣∣Q(x)− 1

∆

∫ ∆

y=0

Q(x+ y)dy

∣∣∣∣ ≤ 1

∆

∫ ∆

y=0

∣∣Q(x+ y)−Q(x)
∣∣ dy

≤ 1

∆

∫ ∆

y=0

y
N − 1

m
dy = ∆

N − 1

2m
.

Combining this inequality with and Claims 2, and 3, we get that

λ(m; v) = (v − v)µ(m)− Ξp(m) + (v − c)Q(Σm)

≥ 1

∆

∫ ∆

y=0

(
(v − v)µ(Σm+ y)− Ξ

p
(Σm+ y) + (v − c)Q(Σm+ y)

)
dy

−N ((3∆ +m)L+ (N − 1)∆)

− vN(N − 1)

∆

(
log(Nm+ ∆) +

Nm

Nm+ ∆
− log(Nm)− 1

)
− v∆

N − 1

2m

≥ inf
{m′|Σm≤Σm′≤Σm+y}

λ(m′; v)

−N ((3∆ +m)L+ (N − 1)∆)

− vN(N − 1)

∆

(
log(Nm+ ∆) +

Nm

Nm+ ∆
− log(Nm)− 1

)
− v∆

N − 1

2m
,

where L is the Lipschitz constant for ti(m). We can first pick m > 0 so that NmL < ε/2.
Since for fixed m, the remaining terms in the last two lines go to zero as ∆→ 0, we can
pick a ∆ small enough such that they sum to less than ε/2. We then conclude that

λ(m; v) ≥ inf
m′∈R+

N

λ(m′; v)− ε = λ(v)− ε.

Hence, λ(v) ≥ λ(v)− ε, and Claim 1 and Lemma 7 give the result.

This proof goes through verbatim with the maxmin must-sell mechanism M̂.

B.2 Proof of Proposition 5

Proof of Proposition 5. Fix ∆ = 1/
√
K where K is a positive integer. We will later

choose K sufficiently large, and equivalently ∆ sufficiently small, to attain the desired ε.
We define the information structure S as follows. The bidders get independent signals in

Si = {0,∆, . . . , K∆} .

Note that the highest message is just ∆−. The probability mass function of si is

fi(si) =

{
(1− exp(−∆)) exp(−si) if si < ∆−1;

exp(−∆−1) if si = ∆−1.
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As a result, si/∆ is a censored geometric random variable with arrival rate 1− exp(−∆).
We will write f(s) = ×Ni=1fi(si) for the joint probability, and

Fi(si) =
∑
s′i≤si

fi(s
′
i) =

{
1− exp(−si −∆) if si < ∆−1;

1 otherwise,

for the cumulative distribution. The value function is

w(s) =
1

f(s)

∫
{s′∈RN

+ |τ(s′i)=si∀i}
w(Σs′) exp(−Σs′)ds,

where

τ(x) =

{
∆bx/∆c if x < ∆−1;

∆−1 otherwise.

An interpretation is that we draw “true” signals s′ for the bidders from S and agent i
observes si = min{∆b∆−1s′ic,∆−1}, i.e., signals above ∆−1 are censored and otherwise
they are rounded down to the nearest multiple of ∆, and w is the conditional expectation
of w given the profile of noisy observations s. Thus, the distribution of w is a mean-
preserving spread of the distribution of w, so that H is a mean-preserving spread of the
distribution of w as well.

Claim 4. If si < ∆−1 for all i, then w(s) only depends on the sum of the signals l = Σs
and

w(s) =
exp(l)

(1− exp(−∆))N

∫ l+N∆

x=l

w(x)ρ(x− l) exp(−x)dx,

and ρ(y) is the N − 1-dimensional volume of the set {s ∈ [0,∆]N |Σs = y}.

Proof of Claim 4. First observe that

f(s) = (1− exp(−∆))N exp(−Σs) = (1− exp(−∆))N exp(−l).

Thus,

w(s) =
exp(l)

(1− exp(−∆))N

∫
{s∈RN

+ |τ(s)=t}
w(Σs) exp(−Σs)ds

=
exp(l)

(1− exp(−∆))N

∫ l+N∆

x=l

∫
{s∈RN

+ |τ(s)=t,Σs=x}
w(Σs) exp(−Σs)dsdx

=
exp(l)

(1− exp(−∆))N

∫ l+N∆

x=l

w(x) exp(−x)

∫
{s∈RN

+ |τ(s−t)=0,Σs=x}
dsdx

=
exp(l)

(1− exp(−∆))N

∫ l+N∆

x=l

w(x) exp(−x)

∫
{s∈RN

+ |τ(s)=0,Σs=x−l}
dsdx,

where the inner integral is just ρ(x− l).
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We will now abuse notation slightly by writing w(l) for the value when l = ΣS, and
let γ(l) = w(l)− c.

Claim 5. If l > ∆, then γ(l) ≤ exp(∆)γ(l −∆).

Proof of Claim 5. From the definition of w, we know that

γ(l) =
exp(l)

(1− exp(−∆))N

∫ l+N∆

x=l

γ(x) exp(−x)ρ(x− l)dx

=
exp(l)

(1− exp(−∆))N

∫ l+(N−1)∆

x=l−∆

γ(x+ ∆) exp(−x−∆)ρ(x− l + ∆)dx

≤ exp(l −∆)

(1− exp(−∆))N

∫ l+(N−1)∆

x=l−∆

γ(x) exp(∆) exp(−x)ρ(x− l + ∆)dx

= exp(∆)γ(l −∆),

where the inequality follows from Lemma 3.

Claim 6. If the direct allocation qi(s) is Nash implemented by a participation secure
mechanism, profit is at most

∑
s∈S

f(s)
N∑
i=1

qi(s)

[
γ(Σs)− 1− Fi(si)

fi(si)
(γ(Σs+ ∆)− γ(Σs))

]
. (34)

Proof of Claim 6. This follows from standard revenue equivalence arguments: If we write
Ui(si, s

′
i) for the utility of a signal si that reports s′i, with Ui(si) = Ui(si, si), then

Ui(si) ≥ Ui(si, s
′
i) = Ui(s

′
i) +

∑
s−i∈S−i

f−i(s−i)qi(s
′
i, s−i) (γ(si + Σs−i)− γ(s′i + Σs−i)) .

Thus

Ui(si) = Ui(0) +

si/∆−1∑
k=0

∑
s−i∈S−i

f−i(s−i)qi(k∆, s−i) (γ((k + 1)∆ + Σs−i)− γ(k∆ + Σs−i)) .

The expectation of Ui(si) across si is therefore

∑
s∈S

f(s)

si/∆∑
k=0

qi(k∆, s−i) (γ((k + 1)∆ + Σs−i)− γ(k∆ + Σs−i))

=
∑
s∈S

f(s)qi(s)(γ(Σs+ ∆)− γ(Σs))
1− Fi(si)
fi(si)

.

The formula then follow from subtracting the bound on aggregate bidder rents from total
surplus.
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Let Π denote the maximum of the profit bound (34) across all qi. Let Π̃ denote the
profit bound when we set q1(s) ≡ 1 and qj(s) ≡ 0 for all j 6= 1.

Claim 7. Π ≤ Π̃ + (1− (1− exp(−∆))N)v.

Proof of Claim 7. When signals are all less than ∆−1, the bidder-independent virtual
value is

γ(l)− 1

exp(∆)− 1
(γ(l + ∆)− γ(l))

≥ γ(l)− exp(−∆)

1− exp(−∆)
(γ(l) exp(∆)− γ(l)) = 0,

where the inequality follows from Claim 5. Thus, the virtual value is maximized by
allocating with probability one to bidder 1. With probability 1− (1− exp(−∆−1))N , one
of the signals is above ∆−1, in which case v is an upper bound on the virtual value.

Claim 8. lim∆→0 Π̃ ≤ Π.

Proof of Claim 8. Plugging in q1 ≡ 1, we find that

Π̃ =
∑

s−1∈S−1

f−1(s−1)
∑
s1∈S1

f1(s1)γ(Σs)−
∑
s′1>s1

f1(s′1)(γ(Σs+ ∆)− γ(Σs))


=

∑
s−1∈S−1

f−1(s−1)
∑
s1∈S1

f1(s1)

γ(Σs) +
∑
s′1<s1

(γ(s′1 + Σs−1)− γ(s′1 + Σs−1 + ∆))


=

∑
s−1∈S−1

f−1(s−1)γ(Σs−1).

Using the definition of γ, this is

Π̃ =
1

1− exp(−∆)

∫ ∆

y=0

∫ ∞
x=0

γ(x+ y)gN−1(x) exp(−y)dxdy

=
1

1− exp(−∆)

∫ ∞
x=0

γ(x)

∫ min{x,∆}

y=0

gN−1(x− y) exp(−y)dydx

≤ 1

1− exp(−∆)

[∫ ∞
x=∆

γ(x)

∫ x

y=0

gN−1(x− y) exp(−y)dydx+ exp(−∆)N(1− exp(−∆))Nv

]
.

Now, observe that∫ x

y=0

gN−1(x− y) exp(−y)dy =
xN−1 − (x−∆)N−1

(N − 1)!
exp(−x)

≤ ∆(N − 1)xN−2

(N − 1)!
exp(−x) = ∆gN−1(x),
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where we have used convexity of xN−1. Thus,

Π̃ ≤ ∆

1− exp(−∆)

∫ ∞
x=0

γ(x)gN−1(x)dx+
exp(−∆)N(1− exp(−∆))Nv

1− exp(−∆)
.

Since the last two terms converge to zero as ∆ → 0 and ∆/(1 − exp(−∆)) → 1, this
implies the claim.

Finally, since Π̃ converges to Π, we can pick ∆ sufficiently small so that Π ≤ Π̃ ≤ Π+ε.
This completes the proof of the proposition.

Note that every step of the proof of Proposition 5 goes through in the must-sell case,
where we replace w with ŵ, and we skip the step in Claim 7 of proving that the discrete
virtual value is non-negative.

B.3 Proof of Theorem 4

Regularity of S is a straightforward implication of Theorem 1 in Milgrom and Weber
(1985). For if the mechanism is finite, then since the value function w(s) is bounded, the
functions w(s)qi(m) − ti(m) are equicontinuous across s. Moreover, signals are indepen-
dent, so that their conditions R1 and R2 is satisfied. Hence, there exists an equilibrium in
distributional strategies, which implies existence of an equilibrium in behavioral strategies.

Now, fix a finite information structure S. We will prove existence of a pure-strategy
equilibrium in the normal form of (M,S), using Corollary 3.3 of Reny (1999). Let us
endow each strategy space ∆(M)Si with the product topology.

Observe that the game is compact and quasiconcave, since payoffs are linear in β. We
next verify that the game is payoff secure. We need to show that for any β and ε > 0, for
every i, there exists a strategy β′i and an open neighborhood V of β−i such that for all
β′−i ∈ V ,

Ui(β
′
i, β
′
−i) ≥ Ui(β)− ε.

For some ∆ > 0 to be chosen shortly, we define β′i so that

β′i(X|si) = βi(X|si) + βi({0}|si)(I∆∈X − I0∈X).

In other words, mass on mi = 0 is shifted to ∆. Now, since the strategy β′i assigns zero
probability to mi = 0, the transfer rule is continuous, and the allocation rule is lower
semi-continuous on (0,∞]×M−i. We conclude that the payoff∫

M i

(w(s)qi(mi,m−i)− ti(m−i,m−i))β′i(dmi|si)
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is lower semi-continuous in m−i. As a result, there exists a neighborhood V of β−i such
that for all β′−i ∈ V ,

Ui(β
′
i, β
′
−i) =

∑
s∈S

∫
M

((w(s)− v)qi(m)− tpi (m))β′(dm|s)π(s)

≥
∑
s∈S

∫
M

((w(s)− v)qi(m)− tpi (m))(β′i, β−i)(dm|s)π(s)− ε

2

= Ui(β
′
i, β−i)−

ε

2
.

Finally, since t
p
i is Lipschitz, we can pick ∆ small enough so that∑
s∈S

∫
M−i

(t
p
i (∆,m−i)− t

p
i (0,m−i))β−i(m−i|s−i)π(s) ≤ ε

4
.

Moreover, when Σm−i > 0, qi(∆,m−i) ≥ qi(0,m−i), and we can always pick ∆ small
enough so that (v − v)(qi(∆, 0) − 1/N) ≤ ε/4. We therefore conclude that Ui(β

′
i, β−i) ≥

Ui(β)− ε
2
. Combining inequalities, we conclude that Ui(β

′
i, β
′
−i) ≥ Ui(β)−ε for all β′−i ∈ V .

This completes the proof of payoff security.
Finally, we verify that the game is reciprocally upper semi-continuous. This is implied

by the fact that
∑N

i=1 Ui(β) is continuous (cf. Reny, 1999, p. 1034), which follows from
continuity of the aggregate supply and the transfers. This concludes the proof thatM is
regular.
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C Proofs for the Many-Bidder Limit

To prove Proposition 6, we first need a number of technical results.

Lemma 15. As N goes to infinity, gCN and GC
N converge pointwise to φ and Φ, respectively.

Proof of Lemma 15. Note that

gCN+1(x) =
√
NgN+1(

√
Nx+N)

=
√
N

(
√
Nx+N)N

N !
exp(−

√
Nx−N).

Stirling’s Approximation says that

0 ≤ N !−
√

2πN

(
N

e

)N
≤ O

(
1

N

)
.

Thus, when N is large, gCN+1(x) is approximately

1√
2π

(
1 +

1√
N

)N
exp(−

√
Nx),

and hence

log(gCN+1(x)) ∼ log(1/
√

2π) +N log

(
1 +

x√
N

)
−
√
Nx.

Using the mean-value formulation of Taylor’s Theorem centered around 0, for every y,
there exists a z ∈ [0, y] such that

log(1 + y) = y − y2

2
+

1

(1 + z)3
y3.

Plugging in y = x/
√
N , we conclude that

log(gCN+1(x)) ∼ log(1/
√

2π) +N
x√
N
−N 1

2

(
x√
N

)2

+N
1

(1 + z)3

(
x√
N

)3

−
√
Nx

= log(1/
√

2π)− 1

2
x2 +

1

(1 + z)3

x3

√
N
,

which converges to log(1/
√

2π)− 1
2
x2 as N goes to infinity, so gCN+1(x) converges to φ(x) =

exp(−x2/2)/
√

2π. Pointwise convergence of GN to Φ follows from Scheffé’s lemma.

Let us define

g̃(x) =

{
1√
2π

exp
(
−x2

2

)
if x < 0;

1√
2π

(1 + x) exp(−x) otherwise.
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Lemma 16. The function g̃(x)|x| is integrable, and for all N and x, |gCN(x)| ≤ g̃(x).

Proof of Lemma 16. Note that∫ ∞
x=−∞

g̃(x)|x|dx =

∫ 0

x=−∞
φ(x)|x|dx+

1√
2π

∫ ∞
x=0

(1 + x)x exp(−x)dx,

which is clearly finite, since the half-normal distribution has finite expectation.
Next, Stirling’s Approximation implies that

gCN+1(x) ≤ 1√
2π

(
1 +

x√
N

)N
exp(−

√
Nx) ≡ g̃N(x).

Now,

d

dN
log(g̃N(x)) = log

(
1 +

x√
N

)
+

1

2

x√
N + x

− x

2
√
N
,

which is clearly zero when x = 0, and

d

dx

d

dN
log(g̃N(x)) =

1√
N + x

−
√
N

2(
√
N + x)2

− 1

2
√
N

=
−x2

2
√
N(
√
N + x)2

,

which is non-positive and strictly negative when x 6= 0. As a result, g̃N(x) is increasing
in N when x < 0 and decreasing in N when x > 0. Since it converges to φ(x) in the limit
as N goes to infinity, we conclude that for x < 0, gCN+1(x) ≤ g̃N(x) ≤ φ(x) = g̃(x), and
for x > 0, gCN+1(x) ≤ g̃N(x) ≤ g̃1(x) = g̃(x) as desired.

Lemma 17. As N goes to infinity, γ̂CN converges almost surely to γ̂C∞(x) = H−1(Φ(x))

and Γ̂CN converges pointwise to

Γ̂C∞(x) =

∫ x

y=−∞
γ̂C∞(y)φ(y)dy.

The latter convergence is uniform on any bounded interval.

Proof of Lemma 17. Note that γ̂CN(x) = H−1(GC
N(x)). By Lemma 15, GC

N(x) converges to
Φ(x) pointwise. Thus, if H−1 is continuous at Φ(x), then as N goes to infinity, we must
have γ̂CN(x) → H−1(Φ(x)) = γ̂C∞(x). Since H−1 is monotonic, the set of discontinuities
has Lebesgue measure zero, so that the pointwise convergence is almost everywhere.

Pointwise convergence of Γ̂CN follows from almost sure convergence of γ̂C , combined
with the fact that γ̂CN is uniformly bounded by max{|v|, |c|}, so that we can apply the dom-

inated convergence theorem. Moreover, Γ̂CN(x) is uniformly Lipschitz continuous across N

and x. As a result, the family Γ̂CN(x) is uniformly bounded and uniformly equicontinuous.
The conclusion about uniform convergence is then a consequence of the Arzela-Ascoli
theorem.
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Let us define x∗ to be the largest solution to Γ̂C∞(x∗) = 0 (which may be −∞). Also,

let us define xN so that Γ
C

N has a graded interval [−
√
N − 1, xN ]. (If there is no graded

interval with left end point −
√
N − 1, then we let xN = −

√
N − 1.)

Lemma 18. As N goes to infinity, xN converges to x∗.

Proof of Lemma 18. By a change of variables y = G−1
N (Φ(x)), we conclude that

Γ̂C∞(x∗) =

∫ x∗

x=0

γ̂C∞(x)φ(x)dx =

∫ G−1
N (Φ(x∗))

x=0

γ̂CN(x)gN(x)dx = Γ̂CN(G−1
N (Φ(x∗))).

This integral must be zero by the definition of x∗, so that xN ≥ G−1
N (Φ(x∗)). Since the

latter converges to x∗ as N →∞, we conclude lim infN→∞ xN ≥ x∗.
Next, recall that xN+1 solves the equation

Γ̂CN+1(xN+1) = γ̂CN+1(xN+1)

∫ xN+1

x=−
√
N

exp(
√
N(x− xN+1))gCN+1(x)dx

= γ̂CN+1(xN+1) exp(−
√
NxN+1 −N)

∫ xN+1

x=−
√
N

exp(
√
Nx+N)gCN+1(x)dx

= γ̂CN+1(xN+1) exp(−
√
NxN+1 −N)

∫ xN+1

x=−
√
N

√
N

(
√
Nx+N)N

N !
dx

≤ v exp(−
√
NxN+1 −N)

(
√
NxN+1 +N)N+1

(N + 1)!

≤ vg̃(xN+1)
1√
N
,

where we have used Lemma 16. The last line converges to zero pointwise, so Γ̂CN(xN) must
converge to zero as well.

Now, if z = lim supN→∞ xN > x∗, then since Γ̂C∞(z) > Γ̂C∞(x∗) = 0, we would contradict

our earlier finding that Γ
C

N(xN) → 0. Thus, lim supN→∞ xN ≤ x∗, so xN must converge
to x∗ as N goes to ∞.

Lemma 19. For every ε > 0, there exists N̂ such that for all N > N̂ , there exists an
x ∈ [x∗ + ε, x∗ + 2ε] at which γCN is not graded.

Proof of Lemma 19. Suppose not. Then there exists a subsequence of N such that for
every x ∈ [x∗+ ε, x∗+ 2ε], γCN(x∗+ ε) = exp(

√
N(x∗+ ε− x̃))γ̂CN(x̃) for some x̃ ≥ x∗+ 2ε.

Thus, for all x ≤ x∗ + ε, we conclude that

γCN(x) ≤ γCN(x∗ + ε) ≤ exp(−
√
Nε)v

which converges to zero as N goes to infinity. This implies that lim infN→∞ Γ
C

N(x∗+ε) = 0.

But Γ
C

N(x∗ + ε) must be weakly larger than Γ̂CN(x∗ + ε), so

0 = lim inf
N→∞

Γ
C

N(x∗ + ε) ≥ lim inf
N→∞

Γ̂CN(x∗ + ε) = Γ̂C∞(x∗ + ε) > 0,

a contradiction.
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Lemma 20. As N goes to infinity, γCN converges almost surely to

γC∞(x) =

{
0 if x < x∗;

γ̂C∞(x) if x ≥ x∗.

Proof of Lemma 20. Let x < x∗. Since xN → x∗ by Lemma 18, for N sufficiently large,
xN > (x∗ + x)/2. Since γCN(x) is graded on (−∞, xN ], it will be graded at x, and

γCN(x) = exp(
√
N − 1(x− xN))γ̂CN(xN)

≤ exp(
√
N − 1(x− x∗)/2)v.

The last line clearly converges to zero pointwise. Since γCN(x) ≥ 0 for all N , we conclude
that γCN(x)→ 0.

Now consider x > x∗ at which γ̂C∞ is continuous. Take ε so that x > x∗ + 2ε and

so that γ̂C∞ is continuous at x∗ + ε. Lemma 19 says that there is a N̂ such that for all

N > N̂ , there exists a point in [x∗ + ε, x∗ + 2ε] at which the gains function is not graded.

Moreover, since γ̂CN(x∗+ ε) converges to γ̂C∞(x∗+ ε), we can pick N̂ large enough and find

a constant γ > 0 such that for N > N̂ , γ̂CN(x∗ + ε) ≥ γ.

Now, suppose that γCN is graded at x, with x in a graded interval [a, b]. Then a ≥ x∗+ε,
and hence γ̂CN(a) ≥ γ̂CN(x∗ + ε) ≥ γ. Recall that on [a, b],

γCN(x) = γ̂CN(a) exp(
√
N − 1(x− a)).

Since γ̂CN is bounded above by v, it must be that γ̂CN(a) exp(
√
N − 1(b− a)) ≤ v, so

b− a ≤ 1√
N − 1

log

(
v

γ̂CN(a)

)
≤ 1√

N − 1
log

(
v

γ

)
≡ εN .

Thus,

γ̂CN(x− εN) ≤ γCN(x) ≤ γ̂CN(x+ εN).

This was true if γCN(x) is graded at x, but clearly the inequality is also true if it is not
graded at x, in which case γCN(x) = γ̂CN(x). Now, γ̂CN(x) = γ̂C∞(Φ−1(GN(x))), so

γ̂C∞(Φ−1(GC
N(x− εN))) ≤ γCN(x) ≤ γ̂C∞(Φ−1(GC

N(x+ εN))).

As N → ∞, the left and right hand sides converge to γ̂C∞(x) from the left and right,
respectively. Since γ̂C∞ is continuous at x, we conclude that γCN(x)→ γ̂C∞(x). The lemma
follows from the fact that the monotonic function γ̂C∞ is continuous almost everywhere.
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Proof of Proposition 6. We will argue that

ZN+1 =
√
N

∫ ∞
x=0

γN+1(x)(gN+1(x)− gN(x))dx

converges to a positive constant as N goes to infinity. Since this is
√
N times the difference

between ex ante gains from trade and profit, this will prove the result.
To that end, observe that

ZN+1 =
√
N

∫ N/2

x=0

γN+1(x)(gN+1(x)− gN(x))dx+

∫ ∞
x=−

√
N/2

γCN+1(x)gCN+1(x)
Nx√
Nx+N

dx.

We claim that the first integral converges to zero as N →∞. Note that gN+1(x) ≤ gN(x)
if and only if x ≤ N . Therefore,∣∣∣∣∣√N

∫ N/2

x=0

γN+1(x)(gN+1(x)− gN(x))dx

∣∣∣∣∣ ≤ (v + c)
√
N

∫ N/2

x=0

(gN(x)− gN+1(x))dx

= (v + c)
√
N(GN(N/2)−GN+1(N/2))

= (v + c)
√
NgN+1(N/2)

= (v + c)
√
N

(N/2)N exp(−N/2)

N !

∼ (v + c)
√
N

(N/2)N exp(−N/2)√
2πN(N/e)N

= (v + c)
1√
2π

exp(−N(log(2)− 1/2)),

where we have again used Stirling’s approximation between the third-to-last and second-
to-last lines. The last line converges to zero as N goes to infinity.

Now consider the second integral in the formula for ZN+1. By Lemma 16, the integrand
is bounded above in absolute value by the integrable function vg̃(x)|x|. Moreover, from
Lemmas 15 and 20, we know that the integrand converges pointwise to γC∞(x)φ(x)x. The
dominated convergence theorem then implies that as N goes to infinity, ZN converges to∫ ∞

x=−∞
γC∞(x)φ(x)xdx,

which is strictly positive because γC∞ is strictly increasing.
The proof goes through for the must-sell guarantee, if we replace γCN with γ̂CN .

To prove Proposition 8, we need a few more intermediate results. Let GN(x) ≡
GN(Nx) be the cumulative distribution for the mean of N independent standard expo-
nential random variables. Define FN(x) ≡ exp(N(1 − x + log(x))). Clearly, FN(x) is
a cumulative distribution for x ∈ [0, 1], FN(0) = 0 and FN(1) = 1. Finally, define the
function DN(α):

DN(α) ≡

{
1

F
−1
N (α)

α ∈ [0, 0.4],

1.1 α ∈ (0.4, 1].
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The choices of 0.4 and 1.1 in DN(α) are arbitrary: any number less than 1/2 and more
than 1, respectively, will work.

Lemma 21. When N̂ is sufficiently large, we have µN(G−1
N (α)) ≤ DN̂(α) for all N ≥ N̂

and α ∈ [0, 1].

Proof of Lemma 21. We first apply the theory of large deviations to the exponential dis-
tribution. Let Λ(t) be the logarithmic moment generating function for the exponential
distribution:

Λ(t) = log

(∫ ∞
x=0

exp(xt− x) dx

)
=

{
∞ t ≥ 1,

− log(1− t) t < 1.

Let Λ∗(x) be the Legendre transform of Λ(t):

Λ∗(x) = sup
t∈R
{xt− Λ(t)} =

{
∞ x ≤ 0,

x− 1− log x x > 0.

Cramér’s theorem (or the Chernoff bound; see Theorem 1.3.12 in Stroock, 2011) then
states that for any N ,

GN(x) ≤ exp(−NΛ∗(x)) = FN(x)

for every x ∈ [0, 1]; or equivalently, F
−1

N (α) ≤ G
−1

N (α) for every α ∈ [0, GN(1)].

By the law of large numbers, when N̂ is sufficiently large, we have GN(1) ≥ 0.4 and

1/G
−1

N (0.4) ≤ 1.1 and for all N ≥ N̂ . The claim of the lemma then follows from two
cases:

If α ∈ [0, 0.4], then we have

µN(G−1
N (α)) ≤ 1

G
−1

N (α)
≤ 1

F
−1

N (α)
≤ 1

F
−1

N̂ (α)
= DN(α)

since GN(1) ≤ 0.4 when N ≥ N̂ , and FN(x) ≤ F N̂(x) for all N ≥ N̂ and x ∈ [0, 1].
If α ∈ (0.4, 1], then

µN(G−1
N (α)) ≤ 1

G
−1

N (α)
≤ 1

G
−1

N (0.4)
≤ 1.1 = DN(α)

since G
−1

N (α) is increasing in α, and 1/G
−1

N (0.4) ≤ 1.1 when N ≥ N̂ .

Lemma 22. When N is sufficiently large, we have∫ 1

α=0

DN(α) dH−1(α) <∞.
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Proof of Lemma 22. Since GN(x) = 1−
∑N

k=1 gk(x), we have:

GN(x) = 1−
N∑
k=1

exp(−Nx)
(Nx)k−1

(k − 1)!

= 1− exp(−Nx)

(
exp(Nx)−

∞∑
k=N

(Nx)k

k!

)
≥ exp(−Nx)

(Nx)N

N !
.

Clearly there exists a x ∈ (0, 1) such that

FN+1(x) = exp((N + 1)(1− x))xN+1 ≤ exp(−Nx)
(Nx)N

N !
≤ GN(x)

for all x ∈ [0, x]. We therefore have DN+1(α) = 1/F
−1

N+1(α) ≤ 1/G
−1

N (α) for all α ∈ [0, α],
where α = min(FN+1(x), 0.4). As a result,∫ 1

α=0

DN+1(α) dH−1(α) ≤
∫ α

α=0

1

G
−1

N (α)
dH−1(α)+

∫ 1

α=α

max

(
1

F
−1

N+1(α)
, 1.1

)
dH−1(α) <∞

holds whenever we have∫ 1

α=0

1

G
−1

N (α)
dH−1(α) =

∫ ∞
x=0

N

x
dŵN(x) <∞.

But finiteness of the last integral follows from the left-tail condition.

Lemma 23. Suppose limN→∞ yN ∈ (0,∞). Then limN→∞ µN+1(
√
NyN +N) = 1.

Proof of Lemma 23. We first argue that for almost every y, µN+1(
√
Ny + N) tends to 1

as N →∞. For this we recall x∗ and xN from Lemmas 18–20.
Consider first y < x∗. For N sufficiently large, the gains function is graded at y, and

hence

µN+1(
√
Ny +N) = C(0,

√
NxN+1 +N) =

N + 1√
NxN+1 +N

.

Since we have already shown that xN → x∗ (Lemma 18), we conclude that µN+1(
√
Ny+N)

goes to 1.
Now consider y > x∗ at which γ̂C∞ is continuous. If the gains function is not graded at

y, then µN+1(
√
Ny +N) = N/(

√
Ny +N). If the gains function is graded at y, then the

length of the graded interval [a, b] 3 y in CLT units is less than εN = v/(γ
√
N for some

γ > 0 independent of N (see Lemma 20). Therefore, we have

N√
N(y + εN) +N

≤ µN+1(
√
Ny +N) ≤ N√

N(y − εN) +N
,
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since limz↗a µN+1(
√
Nz + N) = N√

Na+N
and limz↘b µN+1(

√
Nz + N) = N√

Nb+N
. As a

result, µN+1(
√
Ny +N) is squeezed to 1 as N goes to infinity.

We conclude that µN+1(
√
Ny+N) goes to 1 for y > x∗ at which γ̂C∞ is continuous. Since

γ̂C∞(y) is a monotone function of y, it is continuous at almost every y, so the convergence
µN → 1 is almost everywhere.

Finally, suppose limN→∞ yN = y ∈ (0,∞). Choose y′ and y′′ such that y ∈ (y′, y′′)
and such that

lim
N→∞

µN+1(
√
Ny′ +N) = 1 = lim

N→∞
µN+1(

√
Ny′′ +N).

When N is sufficiently large, we have yN ∈ (y′, y′′), so

µN+1(
√
Ny′′ +N) ≤ µN+1(

√
NyN +N) ≤ µN+1(

√
Ny′ +N).

Taking the limit as N →∞, we conclude limN→∞ µN+1(
√
NyN +N) = 1.

Proof of Proposition 8. We first prove that

lim
N→∞

λN(v;H)→ v − c (35)

for every v ∈ [v, v].
Replacing µN by 1 in equation (19), the definition of λN(v;H), we have

ΠN(H) +

∫ ∞
y=0

GN(y) dŵN(y)−
∫ v

ν=v

dν =ΠN(H) +

(
v −

∫ ∞
y=0

gN(y) ŵN(y)

)
− (v − v)

=ΠN(H)−
∫
v dH(v) + v.

Since limN→∞ΠN(H)→
∫
V
v dH(v)− c, to prove (35), it suffices to prove that

lim
N→∞

∫ ∞
y=0

|1− µN(y)| dŵN(y) = 0.

Changing variables, we can rewrite the above equation as:

lim
N→∞

∫ 1

α=0

|1− µN(G−1
N (α))| dH−1(α) = 0. (36)

We note that Stieltjes integration with respect to dH−1(α) is equivalent to a Lebesgue
integration with respect to the finite measure ω on [0, 1] satisfying ω([s, t)) = H−1(t) −
H−1(s), 0 ≤ s ≤ t ≤ 1, and ω({1}) = 0. The left-tail condition (1) implies that

ω({0}) = lim
α→0

ω([0, α)) = lim
α→0

H−1(α)−H−1(0) ≤ lim
α→0

C ·G−1
N (α)ϕ = 0

for some ϕ > 1 and C > 0. Therefore, ω({0, 1}) = 0.
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The central limit theorem implies that limN→∞(G−1
N (α)− (N −1))/

√
N − 1 = Φ−1(α)

for every α ∈ (0, 1). Therefore, Lemma 23 implies limN→∞ µN(G−1
N (α)) = 1 for every

α ∈ (0, 1). Moreover, Lemmas 21 and 22 imply that there exists a N̂ such that for

all N ≥ N̂ , the integrand |1 − µN(G−1
N (α))| in (36) is dominated by 1 + DN̂(α) which

is integrable with respect to ω. Therefore, equation (36) follows from the dominated
convergence theorem, from which equation (35) follows.

Finally, using the definition of λN(v;H), we have

λN(v;H) ≤ ΠN(H)+

∫ ∞
y=0

µN(y)(1+GN(y)) dŵN(y) ≤ (v−c)+2

∫ 1

α=0

DN̂(α) dH−1(α) <∞,

for all v ∈ [v, v] and N ≥ N̂ , where the inequalities follow from Lemmas 21 and 22. Thus

lim
N→∞

∫
V

λN(v;H) dH ′(v) =

∫
V

v dH ′(v)− c

follows the dominated convergence theorem using (35).

The proof for the must-sell λ̂N(v;H) is identical, after replacing µN(x) with µ̂N(x) =

(N − 1)/x and ΠN(H) with Π̂N(H).
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