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Which equilibria will arise in signaling games depends on how the receiver interprets
deviations from the path of play. We develop a micro-foundation for these off-path
beliefs, and an associated equilibrium refinement, in a model where equilibrium arises
through non-equilibrium learning by populations of patient and long-lived senders and
receivers. In our model, young senders are uncertain about the prevailing distribution
of play, so they rationally send out-of-equilibrium signals as experiments to learn about
the behavior of the population of receivers. Differences in the payoff functions of the
types of senders generate different incentives for these experiments. Using the Gittins
index (Gittins (1979)), we characterize which sender types use each signal more often,
leading to a constraint on the receiver’s off-path beliefs based on “type compatibility”
and hence a learning-based equilibrium selection.

KEYWORDS: Bandit problems, equilibrium refinements, learning in games, signaling
games.

1. INTRODUCTION

IN A SIGNALING GAME, a privately informed sender (for instance, a student) observes their
type (e.g., ability) and chooses a signal (e.g., education level) that is observed by a receiver
(such as an employer), who then picks an action without observing the sender’s type.
These signaling games can have many perfect Bayesian equilibria, which are supported
by different specifications of how the receiver would update his beliefs about the sender’s
type following the observation of off-path signals that the equilibrium predicts will never
occur. These off-path beliefs are not pinned down by Bayes’s rule, and solution concepts
such as perfect Bayesian equilibrium and sequential equilibrium place no restrictions on
them. This has led to the development of equilibrium refinements like Cho and Kreps’s
(1987) Intuitive Criterion and Banks and Sobel’s (1987) divine equilibrium that reduce
the set of equilibria by imposing restrictions on off-path beliefs, using arguments about
how players should infer the equilibrium meaning of observations that the equilibrium
says should never occur.

This paper uses a learning model to provide a micro-foundation for restrictions on the
off-path beliefs in signaling games, and thus derive restrictions on which Nash equilibria
can emerge from learning. Our learning model has a continuum of agents who are ran-
domly matched each period, with a constant inflow of new agents who do not know the
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prevailing distribution of strategies and a constant outflow of equal size. The large pop-
ulation makes it rational for the agents to ignore repeated-game effects and ensures the
aggregate system is deterministic, while turnover in the population lets us analyze learn-
ing in a stationary model where social steady states exist, even though individual agents
learn.1 To give agents adequate learning opportunities, we assume that their expected life-
times are long, so that most agents in the population live a long time. And to ensure that
agents have sufficiently strong incentives to experiment, we suppose that they are very
patient. This leads us to analyze what we call the “patiently stable” steady states of our
learning model.

Our agents are Bayesians who believe they face a time-invariant distribution of oppo-
nents’ play. As in much of the learning-in-games literature and most laboratory experi-
ments, these agents only learn from their personal observations and not from sources such
as newspapers, parents, or friends.2 Therefore, patient young senders will rationally try
out different signals to see how receivers react. This implies some “off-path” signals that
have probability zero in a given equilibrium will occur with small but positive probabilities
in the steady states that approximate it, so we can use Bayes’s rule to derive restrictions
on the receivers’ typical posterior beliefs following these rare but positive-probability ob-
servations. Moreover, differences in the payoff functions of the sender types lead them to
experiment in different ways. As a consequence, we can prove that patiently stable steady
states must be a subset of Nash equilibria where the receiver responds to beliefs about the
sender’s type that respect a type compatibility condition. This provides a learning-based
justification for eliminating certain “unintuitive” equilibria in signaling games. These re-
sults also suggest that learning theory could be used to control the rates of off-path play
and hence generate equilibrium refinements in other games.

1.1. A Toy Example

To give some of the intuition for our general results, we study a particular stage game
embedded in an artificially simple learning model, and explain why optimal experimen-
tation rules out a seemingly unappealing equilibrium outcome. Consider the following
signaling game: the sender is either the high type θH or the low type θL, both equally
likely. The sender chooses between two signals, s ∈ {In�Out}. If the sender plays Out, the
game ends and both parties get 0 payoff. If the sender plays In, the receiver then chooses
an action a ∈ {Up�Down}. Payoffs following the signal In depend on the sender’s type and
receiver’s action, as in the following matrix:

Signal: In Action: Up Action: Down

Type: θH 2�2 −2�0

Type: θL 1�−1 −3�0

Both sender types prefer (In�Up) to Out and prefer Out to (In�Down), while the receiver
prefers Up over Down after signal In if he believes there is greater than 1

3 chance that the
sender has type θH .

1It is interesting to note that Spence (1973) also interpreted equilibria as steady states (or “nontransitory
configurations”) of a learning process, though he did not explicitly specify what sort of process he had in mind.

2As we explain in Corollary 1, our main result extends to environments where some fraction of the popula-
tion has access to data about the play of others.
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This game has a perfect Bayesian equilibrium (PBE) where both types choose Out and
the receiver plays Down after In, sustained by the belief that anyone who sends In has
probability p≤ 1

3 of being θH . This updating requires the receiver to interpret the off-path
In as a signal that the sender is more likely to be θL, even though θH gets 1 more utility
than θL does from In regardless of the receiver’s strategy. So, “both Out” is eliminated by
the D1 criterion.3

Now suppose there are three infinitely lived agents: θH , θL, and R (for receiver). Sup-
pose that in each period t ∈ {1�2�3� � � �}, the three agents play a simultaneous-move game,
where each sender type θi chooses a signal sit , and R chooses a single action at to use
against both of the senders. (This is a deterministic analog of the receiver randomly
matching with each type with probability 1/2 without knowing the sender’s type.) At the
end of period t, R observes the signal choices of both types, while θi observes at if and
only if sit = In. That is, each agent only learns from his/her personal experience; by choos-
ing the “outside option” Out, the sender does not learn how the receiver would have
responded to signal In that period.

Agents think that each opponent is committed to some mixed strategy of the stage
game and plays this strategy each period, regardless of their observations of past play:
that is, all agents are strategically myopic in the sense of Fudenberg and Kreps (1993) and
do not try to influence the distribution of strategies they will face in future rounds. At the
beginning of t = 1, each type θi is endowed with a Beta(cU� cD) prior about the probability
that R responds to In with Up, with cD > cU > 0, so they assign higher probability to
Down than to Up. R starts with two independent priors Beta(cHI � c

H
O ) and Beta(cLI � c

L
O)

about the probabilities that θH and θL choose In each period, where we only assume
cHI � c

H
O � c

L
I � c

L
O > 0. The independence assumption means that R does not learn about the

behavior of one type from the play of the other.
Agents discount payoffs in future periods at rate 0 ≤ δ < 1 and choose a signal or ac-

tion each period so as to maximize expected discounted payoffs. Because expected utility
maximizing agents never strictly prefer to randomize, each of them has a deterministic
optimal policy, so that each discount factor δ induces a deterministic infinite history of
play (sHt � s

L
t � at)

∞
t=1 =: Y(δ). When δ= 0, the agents play myopically every period, and be-

cause of our assumption that cD > cU , both types choose Out in t = 1. They thus gain no
information about R’s play, do not update their beliefs, and continue playing Out in every
future period. So, the unintuitive “both Out” PBE is the learning outcome when agents
are sufficiently impatient. However, we can show, for all large enough δ, that eventually
behavior converges to R playing Up and θH playing In each period.4

We give a sketch of the argument, beginning with characterizing agents’ optimal behav-
ior each period. R observes the same information regardless of his play, so he plays my-
opically under any δ. Let p(ht) be R’s Bayesian posterior belief about the probability that
an In sender has type θH , given history ht . Then at+1 = Up if p(ht) > 1

3 and at+1 = Down
if p(ht) < 1

3 .
Now we turn to θi, whose problem involves active experimentation. Formally, the dy-

namic optimization problem facing θi is a one-armed Bernoulli bandit. Choosing sit = Out
is equivalent to taking the safe outside option, while choosing sit = In is equivalent to

3Any receiver play at the off-path signal In that makes it weakly optimal for θL to deviate to In would also
make it strictly optimal for θH to deviate. Cho and Kreps’s (1987) D1 criterion therefore requires the receiver
to put 0 probability on θ= θL after In. However, the PBE passes their Intuitive Criterion.

4In practice, the required patience level is not unreasonably high. When cD = 1�1 cU = 1, cHI = cLO = 1, and
cHO = cLI = 3, for example, δ= 0 yields the pathological PBE as the long-run outcome, but when δ≥ 0�92, the
long-run outcome involves sHt = In and at = Up.
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pulling the risky arm and getting a payoff depending on whether the pull results in a suc-
cess (at = Up) or a failure (at = Down). The optimal policy for θi involves the Gittins
index (defined later in Equation (2)). Type θi plays In at those histories where In has a
positive Gittins index.

Once a type chooses to play Out in some period, she receives no further information
and will continue to play Out in all subsequent periods. Denote the period in Y(δ) that
θi first switches from In to Out as T(i�δ) ∈ N ∪ {∞}, where T(i�δ) = ∞ means θi plays
In forever. The argument that learning eliminates pooling on Out follows from three
observations:

OBSERVATION 1: The high type switches to Out later than the low type does, that is,
T(H�δ)≥ T(L�δ). To see why, suppose by way of contradiction that T(H�δ) < T(L�δ).
Then, in period t = T(H�δ), both θH and θL have played In until now and have seen
the same history, so they hold the same belief about R’s play. Yet θH chooses Out at this
history while θL chooses In, meaning θH has a negative Gittins index for In while θL has
a positive one. This is impossible, since θH ’s payoff from In is always 1 higher than that
of θL, so θH ’s index for In is also always 1 higher than that of θL when the two types have
the same belief about R’s play.

OBSERVATION 2: As the high type becomes patient, she experiments with In arbitrarily
many times, that is, limδ→1 T(H�δ) = ∞. This follows because for any fixed full-support
prior belief of θH about R’s mixed strategy, the Gittins index for In stays close to the “suc-
cess payoff” of 2 for a length of time that grows to infinity as δ→ 1, even in the worst case
where R plays Down in every period.

OBSERVATION 3: If the high type plays In sufficiently many times and more often than the
low type does, then eventually R will believe that In senders have greater than 1

3 chance of
being θH , that is, there exists N̄ ∈ N so that p(hT) > 1

3 for any history hT where (i) θH
played In at least N̄ times and (ii) θL played In no more than θH did. This follows from
the fact that R’s belief about θi’s play after niI instances of In and niO instances of Out is
Beta(ciI + niI� ciO + niO).

From Observation 2, we see that T(H�δ) is larger than the N̄ of Observation 3 when
δ is sufficiently large. The history up to period t for any t ≥ N̄ will therefore contain at
least N̄ periods of θH playing In (namely, the very first N̄ periods of the game), and by
Observation 1, θL will have played In no more than θH did in this history. So by Observa-
tion 3, p(ht) > 1

3 for t ≥ N̄ , meaning at = Up for t ≥ N̄ . Since sHt = In for all t ≤ N̄ and
observing Up increases the Gittins index of In, the high type must always play In. This
means limt→∞ sHt = In and limt→∞ at = Up for large δ < 1.

In this simple learning model, agents are patient and face the same opponents many
times but do not try to influence their future play. Furthermore, agents believe that oppo-
nents’ play is stationary but it changes markedly over time. Finally, the analysis was greatly
simplified because there are only two signals, one of which gives a certain payoff to the
senders; this makes playing Out an absorbing state and, together with the assumption of
Beta priors, lets us explicitly calculate how the system evolves. This paper’s focus is on
general signaling games embedded in a learning model with large populations and anony-
mous random matching, eliminating repeated-game effects. We focus on steady states of
the model, where the stationary assumption is satisfied. Also, we relax the Beta prior as-
sumption and allow learners to have fairly general non-doctrinaire priors. Many results
about the steady-state model, however, have analogs in the simple model above.
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Intuitively, θH is “more compatible” with signal In than θL. Definition 2 formalizes this
relation in general signaling games. Observation 1 corresponds to Lemma 2, which shows
that whenever one type is more compatible than another with a signal, the more compati-
ble type sends the signal more often. Observation 2 corresponds to Lemma 4, which says a
sufficiently patient and long-lived sender type will experiment many times with all signals
that have the potential to strictly improve that type’s equilibrium payoff. Observation 3
corresponds to Lemma 3, which says receivers can eventually learn the compatibility rela-
tion associated with each signal, provided senders’ play respects the relation and the more
compatible type experiments enough with the signal. Lemmas 2, 3, and 4 are combined to
prove the main result of the paper (Theorem 2), a learning-based refinement in general
signaling games.

1.2. Outline and Overview of Results

Section 2 lays out the notation we will use for signaling games and introduces our learn-
ing model. Section 3 introduces the Gittins index, which we use to analyze the senders’
learning problem. It also defines type compatibility, which is a partial order that drives our
results. We say that type θ′ is more type-compatible with signal s′ than type θ′′ if, whenever
s′ is a weak best response for θ′′ against some receiver behavior strategy, it is a strict best
response for θ′ against the same strategy. To relate this static definition to the senders’
optimal dynamic learning behavior, we show that, under our assumptions, the senders’
learning problem is formally a multi-armed bandit, so the optimal policy of each type is
characterized by the Gittins index. Theorem 1 shows that the compatibility order on types
is equivalent to an order on their Gittins indices: θ′ is more type-compatible with signal
s′ than type θ′′ if and only if, whenever s′ has the (weakly) highest Gittins index for θ′′, it
has the strictly highest index for θ′, provided the two types hold the same beliefs and have
the same discount factor.

Section 4 studies the aggregate behavior of the sender and receiver populations. There
we define and characterize the aggregate responses of the senders and of the receivers,
which are the analogs of the best-response functions in the one-shot signaling game. First,
we use a coupling argument to extend Theorem 1 to the aggregate sender behavior, prov-
ing that types who are more compatible with a signal send it more often in aggregate
(Lemma 2). Then we turn to the receivers. Intuitively, we would expect that when re-
ceivers are long-lived, most of them will have beliefs that respect type compatibility, and
we show that this is the case. More precisely, we show that most receivers best respond to
a posterior belief whose likelihood ratio of θ′ to θ′′ dominates the prior likelihood ratio
of these two types whenever they observe a signal s which is more type-compatible with θ′

than θ′′. Lemma 3 shows this is true for any signal that is sent “frequently enough” relative
to the receivers’ expected lifespan, using a result of Fudenberg, He, and Imhof (2017) on
updating posteriors after rare events.

Finally, Section 5 combines the earlier results to characterize the steady states of the
learning model, which can be viewed as pairs of mutual aggregate responses, analogous
to the definition of Nash equilibrium. We start by proving Lemma 4, which shows that any
signal that is not weakly equilibrium dominated (see Definition 11) gets sent “frequently
enough” in steady state when senders are sufficiently patient and long lived. Combining
the three lemmas discussed above, we establish our main result: any patiently stable steady
state must be a Nash equilibrium satisfying the additional restriction that the receivers
best respond to certain admissible beliefs after every off-path signal (Theorem 2).

As an example, consider Cho and Kreps’s (1987) beer-quiche game, where it is easy to
verify that the strong type is more compatible with Beer than the weak type. Our results
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imply that the strong types will in aggregate send this signal at least as often as the weak
types do, and that a very patient strong type will experiment with it “many times.” As
a consequence, when senders are patient, long-lived receivers are unlikely to revise the
probability of the strong type downwards following an observation of Beer. Thus, the
“both types eat quiche” equilibrium is not a patiently stable steady state of the learning
model, as it would require receivers to interpret Beer as a signal that the sender is weak.

Finally, Theorem 3 provides a stronger implication of patient stability in generic pure-
strategy equilibria, showing that off-path beliefs must assign probability zero to types that
are equilibrium dominated in the sense of Cho and Kreps (1987).

1.3. Related Work

Fudenberg and Kreps (1988, 1994, 1995) pointed out that experimentation plays an im-
portant role in determining learning outcomes in extensive-form games. As in Fudenberg
and Kreps (1993), they studied a model with a single infinitely-lived and strategically my-
opic agent in each player role who acts as if the opponent’s play is stationary. Because
these models involved accumulating information over time, they did not have steady
states. Our work is closer to that of Fudenberg and Levine (1993) and Fudenberg and
Levine (2006) which also studied learning by Bayesian agents in a large population who
believe that society is in a steady state. A key issue in this work, and more generally in
studying learning in extensive-form games, is characterizing how much agents will exper-
iment with myopically suboptimal actions. If agents do not experiment at all, then non-
Nash equilibria can persist, because players can maintain incorrect but self-confirming
beliefs about off-path play. Fudenberg and Levine (1993) showed that patient long-lived
agents will experiment enough at their on-path information sets to learn if they have any
profitable deviations, thus ruling out steady states that are not Nash equilibria. However,
more experimentation than that is needed for learning to generate the sharper predictions
associated with backward induction and sequential equilibrium. Fudenberg and Levine
(2006) showed that patient rational agents need not do enough experimentation to imply
backwards induction in games of perfect information. Later on, we say how the models
and proofs of those papers differ from ours.

This paper is also related to the Bayesian learning models of Kalai and Lehrer (1993),
which studied two-player games with one agent on each side, so that every self-confirming
equilibrium is path-equivalent to a Nash equilibrium, and Esponda and Pouzo (2016),
which allowed agents to experiment but did not characterize when and how this occurs. It
is also related to the literature on boundedly rational experimentation in extensive-form
games (e.g., Jehiel and Samet (2005), Laslier and Walliser (2015)), where the experimen-
tation rules of the agents are exogenously specified. We assume that each sender’s type is
fixed at birth, as opposed to being i.i.d. over time. Dekel, Fudenberg, and Levine (2004)
showed some of the differences this can make using various equilibrium concepts, but
they did not develop an explicit model of non-equilibrium learning.

For simplicity, we assume here that agents do not know the payoffs of other players
and have full support priors over the opposing side’s behavior strategies. Our companion
paper Fudenberg and He (2017) supposed that players assign zero probability to domi-
nated strategies of their opponents, as in the Intuitive Criterion (Cho and Kreps (1987)),
divine equilibrium (Banks and Sobel (1987)), and rationalizable self-confirming equilib-
rium (Dekel, Fudenberg, and Levine (1999)). There, we analyzed how the resulting micro-
founded equilibrium refinement compares to those in past work.
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2. MODEL

2.1. Signaling Game Notation

A signaling game has two players, a sender (player 1, “she”) and a receiver (player 2,
“he”). The sender’s type is drawn from a finite set Θ according to a prior λ ∈ Δ(Θ) with
λ(θ) > 0 for all θ.5 There is a finite set S of signals for the sender and a finite set A of
actions for the receiver.6 The utility functions of the sender and receiver are u1 :Θ× S ×
A→ R and u2 :Θ× S×A→ R, respectively.

When the game is played, the sender knows her type and sends a signal s ∈ S to the
receiver. The receiver observes the signal, then responds with an action a ∈A. Finally,
payoffs are realized.

A behavior strategy for the sender π1 = (π1(·|θ))θ∈Θ is a type-contingent mixture over
signals S. Write Π1 for the set of all sender behavior strategies.

A behavior strategy for the receiver π2 = (π2(·|s))s∈S is a signal-contingent mixture over
actions A. Write Π2 for the set of all receiver behavior strategies.

2.2. Learning by Individual Agents

We now build a learning model with a given signaling game as the stage game. In this
subsection, we explain an individual agent’s learning problem. In the next subsection, we
complete the learning model by describing a society of learning agents who are randomly
matched to play the signaling game every period.

Time is discrete and all agents are rational Bayesians with geometrically distributed
lifetimes. They survive between periods with probability 0 ≤ γ < 1 and further discount
future utility flows by 0 ≤ δ < 1, so their objective is to maximize the expected value of∑∞

t=0(γδ)
t · ut . Here, 0 ≤ γδ < 1 is the effective discount factor, and ut is the payoff t

periods from today.
At birth, each agent is assigned a role in the signaling game: either as a sender with type

θ or as a receiver. Agents know their role, which is fixed for life. Every period, each agent
is randomly and anonymously matched with an opponent to play the signaling game, and
the game’s outcome determines the agent’s payoff that period. At the end of each period,
agents observe the outcomes of their own matches, that is, the signal sent, the action
played in response, and the sender’s type. They do not observe the identity, age, or past
experiences of their opponents, nor does the sender observe how the receiver would have
reacted to a different signal.7 Agents update their beliefs and play the signaling game
again with new random opponents next period, provided they are still alive.

Agents believe they face a fixed but unknown distribution of opponents’ aggregate play,
so they believe that their observations will be exchangeable. We feel that this is a plausible
first hypothesis in many situations, so we expect that agents will maintain their belief in
stationarity when it is approximately correct, but will reject it given clear evidence to the

5Here and subsequently, Δ(X) denotes the collection of probability distributions on the set X .
6To lighten notation, we assume that the same set of actions is feasible following any signal. This is without

loss of generality for our results as we could let the receiver have very negative payoffs when he responds to a
signal with an “impossible” action.

7The receiver’s payoff reveals the sender’s type for generic assignments of payoffs to terminal nodes. If the
receiver’s payoff function is independent of the sender’s type, his beliefs about it are irrelevant. If the receiver
does care about the sender’s type but observes neither the sender’s type nor his own realized payoff, a great
many outcomes can persist, as in Dekel, Fudenberg, and Levine (2004).
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contrary, as when there is a strong time trend or a high-frequency cycle. The environment
will indeed be constant in the steady states that we analyze.

Formally, each sender is born with a prior density function over the aggregate behavior
strategy of the receivers, g1 :Π2 → R+� which integrates to 1. Similarly, each receiver is
born with a prior density over the sender’s behavior strategies,8 g2 :Π1 → R+. We denote
the marginal distribution of g1 on signal s as g(s)1 , so that g(s)1 (π2(·|s)) is the density of
the new senders’ prior over how receivers respond to signal s. Similarly, we denote the θ
marginal of g2 as g(θ)2 , so that g(θ)2 (π1(·|θ)) is the new receivers’ prior density over π1(·|θ) ∈
Δ(S).

It is important to remember that g1 and g2 are beliefs over opponents’ strategies, but not
strategies themselves. A new sender expects the response to s to be

∫
π2(·|s) · g1(π2)dπ2,

while a new receiver expects type θ to play
∫
π1(·|θ) · g2(π1)dπ1.

We now state a regularity assumption on the agents’ priors that will be maintained
throughout.

DEFINITION 1: A prior g= (g1� g2) is regular if:
(i) [Independence] g1(π2)=∏

s∈S g
(s)
1 (π2(·|s)) and g2(π1)=∏

θ∈Θ g
(θ)
2 (π1(·|θ)).

(ii) [g1 non-doctrinaire] g1 is continuous and strictly positive on the interior of Π2.
(iii) [g2 nice] for each type θ, there are positive constants (α(θ)s )s∈S such that

π1(·|θ) 	→ g(θ)2

(
π1(·|θ)

)∏
s∈S
π1(s|θ)α(θ)s −1

is uniformly continuous and bounded away from zero on the relative interior of Π(θ)
1 , the

set of behavior strategies of type θ.

Independence ensures that a receiver does not learn how type θ plays by observing the
behavior of some other type θ′ 
= θ, and that a sender does not learn how receivers react
to signal s by experimenting with some other signal s′ 
= s. For example, this means in
Cho and Kreps’s (1987) beer-quiche game that the sender does not learn how receivers
respond to beer by eating quiche.9 The non-doctrinaire nature of g1 and g2 implies that the
agents never see an observation that they assigned zero prior probability, so that they have
a well-defined optimization problem after any history. Non-doctrinaire priors also imply
that a large enough data set can outweigh prior beliefs (Diaconis and Freedman (1990)).
The niceness assumption in (iii) ensures that g2 behaves like a power function near the
boundary of Π1. Any density that is strictly positive on Π1 satisfies this condition, as does
the Dirichlet distribution, which is the prior associated with fictitious play (Fudenberg and
Kreps (1993)).

8Note that the agent’s prior belief is over opponents’ aggregate play (i.e., Π1 or Π2) and not over the pre-
vailing distribution of behavior strategies in the opponent population (i.e., Δ(Π2) or Δ(Π1)), since under our
assumption of anonymous random matching, these are observationally equivalent for our agents. For instance,
a receiver cannot distinguish between a society where all type θ randomize 50–50 between signals s1 and s2 each
period, and another society where half of the type θ always plays s1 while the other half always plays s2. Note
also that because agents believe the system is in a steady state, they do not care about calendar time and do
not have beliefs about it. Fudenberg and Kreps (1994) supposed that agents append a non-Bayesian statistical
test of whether their observations are exchangeable to a Bayesian model that presumes exchangeability.

9One could imagine learning environments where the senders believe that the responses to various signals
are correlated, but independence is a natural special case.
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The set of histories for an age t sender of type θ is Yθ[t] := (S × A)t , where, each
period, the history records the signal sent and the action that her receiver opponent took
in response. The set of all histories for a type θ is the union Yθ :=⋃∞

t=0Yθ[t]. The dynamic
optimization problem of type θ has an optimal policy function σθ : Yθ → S, where σθ(yθ)
is the signal that a type θ with history yθ would send the next time she plays the signaling
game. Analogously, the set of histories for an age t receiver is Y2[t] := (Θ× S)t , where,
each period, the history records the type of his sender opponent and the signal that she
sent. The set of all receiver histories is the union Y2 :=⋃∞

t=0Y2[t]. The receiver’s learning
problem admits an optimal policy function σ2 : Y2 →AS , where σ2(y2) is the pure strategy
that a receiver with history y2 would commit to next time he plays the game.10

2.3. Random Matching and Aggregate Play

We analyze learning in a deterministic stationary model with a continuum of agents, as
in Fudenberg and Levine (1993, 2006). One innovation is that we let lifetimes follow a
geometric distribution instead of the finite and deterministic lifetimes assumed in those
earlier papers, so that we can use the Gittins index.

The society contains a unit mass of agents in the role of receivers and mass λ(θ) in
the role of type θ for each θ ∈ Θ. As described in Section 2.2, each agent has 0 ≤ γ < 1
chance of surviving at the end of each period and complementary chance 1 − γ of dying.
To preserve population sizes, (1 − γ) new receivers and λ(θ)(1 − γ) new type θ are born
into the society every period.

Each period, agents in the society are matched uniformly at random to play the signal-
ing game. In the spirit of the law of large numbers, each sender has probability (1 − γ)γt
of matching with a receiver of age t, while each receiver has probability λ(θ)(1 − γ)γt of
matching with a type θ of age t.

A state ψ of the learning model is described by the mass of agents with each possible
history. We write it as

ψ ∈
(

×
θ∈Θ
Δ(Yθ)

)
×Δ(Y2)�

We refer to the components of a state ψ by ψθ ∈ Δ(Yθ) and ψ2 ∈ Δ(Y2).
Given the agents’ optimal policies, each possible history for an agent completely de-

termines how that agent will play in their next match. The sender policy functions σθ are
maps from sender histories to signals,11 so they naturally extend to maps from distribu-
tions over sender histories to distributions over signals. That is, given the policy function
σθ, each state ψ induces an aggregate behavior strategy σθ(ψθ) ∈ Δ(S) for each type θ
population, where we extend the domain of σθ from Yθ to Δ(Yθ) in the natural way:

σθ(ψθ)(s) :=ψθ
{
yθ ∈ Yθ : σθ(yθ)= s}� (1)

Similarly, state ψ and the optimal receiver policy σ2 together induce an aggregate be-
havior strategy σ2(ψ2) for the receiver population, where

σ2(ψ2)(a|s) :=ψ2

{
y2 ∈ Y2 : σ2(y2)(s)= a}�

10Because our agents are expected-utility maximizers, it is without loss of generality to assume each agent
uses a deterministic policy rule. If more than one such rule exists, we fix one arbitrarily. Of course, the optimal
policies σθ and σ2 depend on the prior g as well as the effective discount factor δγ. Where no confusion arises,
we suppress these dependencies.

11Remember that we have fixed deterministic policy functions.
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We will study the steady states of this learning model, to be defined more precisely
in Section 5. Loosely speaking, a steady state is a state ψ that reproduces itself indefi-
nitely when agents use their optimal policies. Put another way, a steady state induces a
time-invariant distribution over how the signaling game is played in the society. Suppose
society is at steady state today and we measure what fraction of type θ sent a certain sig-
nal s in today’s matches. After all agents modify their strategies based on their updated
beliefs and all births and deaths take place, the fraction of type θ playing s in the matches
tomorrow will be the same as today.

3. SENDERS’ OPTIMAL POLICIES AND TYPE COMPATIBILITY

This section studies the senders’ learning problem. We will prove that differences in the
payoff structures of the various sender types generate certain restrictions on their behav-
ior in the learning model. Section 3.1 notes that the senders face a multi-armed bandit, so
the Gittins index characterizes their optimal policies, and shows how to relate the Gittins
index of a signal to the expected sender payoff versus a particular mixed strategy of the
receiver. In Section 3.2, we define type compatibility, which formalizes what it means for
type θ′ to be more “compatible” with a given signal s than type θ′′ is. The definition of type
compatibility is static, in the sense that it depends only on the two types’ payoff functions
in the one-shot signaling game. Section 3.3 relates type compatibility to the Gittins index,
which applies to the dynamic learning model. Lemma 2 in Section 4 uses this relationship
to show that if type θ′ is more compatible with signal s than type θ′′, then, faced with
any fixed distribution of receiver play, the type θ′ population sends s more often in the
aggregate than the type θ′′ population does.

3.1. Optimal Policies and Multi-Armed Bandits

Each type θ sender thinks she is facing a fixed but unknown aggregate receiver behavior
strategy π2, so each period when she sends signal s, she believes that the response is drawn
from some π2(·|s) ∈ Δ(A), i.i.d. across periods. Because her beliefs about the responses
to the various signals are independent, her problem is equivalent to a discounted multi-
armed bandit, with signals s ∈ S as the arms, where the rewards of arm s are distributed
according to u1(θ� s�π2(·|s)).

Let νs ∈ Δ(Δ(A)) be a belief over the space of mixed replies to signal s, and let ν =
(νs)s∈S be a profile of such beliefs. Write I(θ� s� ν�β) for the Gittins index of signal s for
type θ, with beliefs ν over receiver’s play after various signals and with effective discount
factor β= δγ, so that

I(θ� s� ν�β) := sup
τ>0

Eνs

{
τ−1∑
t=0

βt · u1

(
θ� s�as(t)

)}

Eνs

{
τ−1∑
t=0

βt

} � (2)

Here as(t) is the receiver’s response that the sender observes the tth time she sends
signal s, τ is a stopping time,12 and the expectation Eνs over the sequence of responses
{as(t)}t≥0 depends on the sender’s belief νs about responses to signal s.13

12That is, whether or not τ = t depends only on the realizations of as(0)�as(1)� � � � � as(t − 1).
13The Gittins index can be interpreted as the value of an auxiliary optimization problem, where type θ

chooses each period to either send signal s and obtain a payoff according to a random receiver action drawn
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The Gittins index theorem (Gittins (1979)) implies that after every positive-probability
history yθ, the optimal policy σθ for a sender of type θ sends the signal that has the highest
Gittins index for that type under the profile of posterior beliefs (νs)s∈S that is induced
by yθ.

Importantly, we can reformulate the objective function defining the Gittins index in
Equation (2), linking it to the one-shot signaling game payoff structure.

LEMMA 1: For every signal s, stopping time τ, belief νs, and discount factor β, there exists
π2�s(τ� νs�β) ∈ Δ(A) so that for every θ,

Eνs

{
τ−1∑
t=0

βt · u1

(
θ� s�as(t)

)}

Eνs

{
τ−1∑
t=0

βt

} = u1

(
θ� s�π2�s(τ� νs�β)

)
�

That is to say, when the stopping problem in Equation (2) is evaluated at an arbitrary
stopping time τ, the payoff is equal to sender’s expected utility from playing s against the
receiver strategy π2�s(τ� νs�β) in the one-shot signaling game.

The proof of Lemma 1 is in Appendix A.2 and shows how to construct π2�s(τ� νs�β),
which can be interpreted as a discounted time average over the receiver actions that are
observed before stopping. To illustrate the construction, suppose νs is supported on two
pure receiver strategies after s: either π2(a

′|s) = 1 or π2(a
′′|s) = 1, with both strategies

equally likely. Suppose also u1(θ� s�a
′) > u1(θ� s�a

′′). Consider the stopping time τ that
specifies stopping after the first time the receiver plays a′′. Then the discounted time av-
erage frequency of a′′ is

∞∑
t=0

βt · Pνs
[
τ ≥ t and receiver plays a′′ in period t

]
∞∑
t=0

βt · Pνs [τ ≥ t]
= 0�5

1 +
∞∑
t=1

βt · 0�5

= 1 −β
2 −β�

So π2�s(τ� νs�β)(a
′′) = 1−β

2−β and similarly, we can calculate that π2�s(τ� νs�β)(a
′) = 1

2−β ,
which shows that π2�s indeed corresponds to a mixture over receiver actions for
each β. As β→ 1, this mixture converges to the pure strategy of always playing a′, so
u1(θ� s�π2�s(τ� νs�β)) converges to u1(θ� s�a

′), the highest possible payoff for type θ after
s; this parallels the fact that as β tends to 1, the Gittins index for θ after s converges to
the highest payoff in the support of the belief νs .

according to π2(·|s), or to stop forever. The objective of the auxiliary problem is to maximize the per-period
expected discounted payoff until stopping, as the numerator of Equation (2) describes the expected discounted
sum of payoffs until stopping while the denominator shows the expected discounted number of periods until
stopping.
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3.2. Type Compatibility in Signaling Games

We now introduce a notion of the comparative compatibility of two types with a given
signal in the one-shot signaling game.

DEFINITION 2: Signal s′ is more type-compatible with θ′ than θ′′, written as θ′ �s′ θ
′′, if

for every π2 ∈Π2 such that

u1

(
θ′′� s′�π2

(·|s′))≥ max
s′′ 
=s′

u1

(
θ′′� s′′�π2

(·|s′′))�
we have

u1

(
θ′� s′�π2

(·|s′))>max
s′′ 
=s′

u1

(
θ′� s′′�π2

(·|s′′))�
In words, θ′ �s′ θ

′′ means that whenever s′ is a weak best response for θ′′ against some
receiver behavior strategy π2, it is also a strict best response for θ′ against π2.

The following proposition says the compatibility order is transitive and essentially asym-
metric. Its proof is in Appendix A.1.

PROPOSITION 1:
(i) �s′ is transitive.

(ii) Except when s′ is either strictly dominant for both θ′ and θ′′ or strictly dominated for
both θ′ and θ′′, θ′ �s′ θ

′′ implies θ′′ 
�s′ θ
′.

To check the compatibility condition, one must consider all strategies in Π2, just as
the belief restrictions in divine equilibrium involve all the possible mixed best responses
to various beliefs. However, when the sender’s utility function is separable in the sense
that u1(θ� s�a) = v(θ� s) + z(a), as in Spence’s (1973) job-market signaling game and
in Cho and Kreps’s (1987) beer-quiche game (given below), a sufficient condition for
θ′ �s′ θ

′′ is

v
(
θ′� s′

)− v(θ′′� s′
)
>max

s′′ 
=s′
v
(
θ′� s′′

)− v(θ′′� s′′
)
�

This can be interpreted as saying s′ is the least costly signal for θ′ relative to θ′′. In the Sup-
plemental Material (Fudenberg and He (2018)), we present a general sufficient condition
for θ′ �s′ θ

′′ under general payoff functions.

EXAMPLE 1—Cho and Kreps’s (1987) Beer-Quiche Game: The sender (P1) is either
strong (θstrong) or weak (θweak), with prior probability λ(θstrong)= 0�9. The sender chooses
to either drink Beer or eat Quiche for breakfast. The receiver (P2), observing this break-
fast choice but not the sender’s type, chooses whether to Fight the sender. If the sender is
θweak, the receiver prefers to Fight. If the sender is θstrong, the receiver prefers to NotFight.
Also, θstrong prefers Beer for breakfast while θweak prefers Quiche for breakfast. Both types
prefer not being fought over having their favorite breakfast.
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This game has separable sender utility with v(θstrong�Beer) = v(θweak�Quiche) = 1,
z(Fight)= 0, and z(NotFight)= 2. So, we have θstrong �Beer θweak.

It is easy to see that in every Nash equilibrium π∗, if θ′ �s′ θ
′′, then π∗

1(s
′|θ′′) > 0 implies

π∗
1(s

′|θ′) = 1. By Bayes’s rule, this implies that the receiver’s equilibrium belief p after
every on-path signal s′ satisfies the restriction p(θ′′ |s′)

p(θ′ |s′) ≤ λ(θ′′)
λ(θ′) if θ′ �s′ θ

′′. Thus, in every
Nash equilibrium of the beer-quiche game, if the sender chooses Beer with positive ex
ante probability, then the receiver’s odds ratio that the sender is tough after seeing this
signal cannot be less than the prior odds ratio. Our main result, Theorem 2, essentially
shows, for any strategy profile that can be approximated by steady-state outcomes with
patient and long-lived agents, that the same compatibility-based restriction is satisfied
even for off-path signals. In particular, this allows us to place restrictions on the receiver’s
belief after seeing Beer in equilibria where no type of sender ever plays this signal.

3.3. Type Compatibility and the Gittins Index

We now connect the type compatibility order for a given signal with the associated
Gittins indices.

THEOREM 1: θ′ �s′ θ
′′ if and only if, for every β ∈ [0�1) and every profile of beliefs ν,

I(θ′′� s′� ν�β)≥ maxs′′ 
=s′ I(θ′′� s′′� ν�β) implies I(θ′� s′� ν�β) >maxs′′ 
=s′ I(θ′� s′′� ν�β).

That is, θ′ �s′ θ
′′ if and only if whenever s′ has the (weakly) highest Gittins index for θ′′,

it has the highest index for θ′, provided the two types hold the same beliefs and have the
same discount factor. The proof involves reformulating the Gittins index as in Lemma 1,
then applying the compatibility definition.

PROOF OF THEOREM 1: Step 1: Only If.
Suppose θ′ �s′ θ

′′ and fix some β ∈ [0�1) and prior belief ν. Suppose I(θ′′� s′� ν�β) ≥
maxs′′ 
=s′ I(θ′′� s′′� ν�β). We show that I(θ′� s′� ν�β) >maxs′′ 
=s′ I(θ′� s′′� ν�β).

On any arm s′′ 
= s′, type θ′′ could use the (suboptimal) stopping time τθ′
s′′ , which by

Lemma 1 yields an expected per-period payoff of u1(θ
′′� s′′�πs′′(νs′′� τθ

′
s′′�β)). This is a lower

bound for the Gittins index of arm s′′ for type θ′′, so combined with the hypothesis that
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I(θ′′� s′� ν�β)≥ maxs′′ 
=s′ I(θ′′� s′′� ν�β), we get

I
(
θ′′� s′� ν�β

)≥ max
s′′ 
=s′

u1

(
θ′′� s′′�πs′′

(
νs′′� τ

θ′
s′′�β

))
� (3)

Now define the receiver strategy π2 ∈ Π2 by π2(·|s′) := πs′(νs′� τ
θ′′
s′ �β), π2(·|s′′) :=

πs′′(νs′′� τ
θ′
s′′�β) for all s′′ 
= s′. Then Equation (3) can be rewritten as

u1

(
θ′′� s′�π2

(·|s′))≥ max
s′′ 
=s′

u1

(
θ′′� s′′�π2

(·|s′′))�
that is, s′ is weakly optimal for θ′′ against π2. By the definition of θ′ �s′ θ

′′, this implies s′

is strictly optimal for θ′ against π2.
From the definition of π2 and Lemma 1, the expected utility of θ′ playing any s′′ 
= s′

against π2 is equal to the Gittins index of that arm for θ′, namely, I(θ′� s′′� ν�β). On
the other hand, u1(θ

′� s′�π2(·|s′)) is only a lower bound for I(θ′� s′� ν�β). This shows
I(θ′� s′� ν�β) >maxs′′ 
=s′ I(θ′� s′′� ν�β) as desired.

Step 2: If.
Suppose θ′ 
� s′θ

′′. Then there is some receiver strategy π∗
2 ∈Π2 such that

u1

(
θ′′� s′�π∗

2

(·|s′))≥ max
s′′ 
=s′

u1

(
θ′′� s′′�π∗

2

(·|s′′))
and

u1

(
θ′� s′�π∗

2

(·|s′))≤ max
s′′ 
=s′

u1

(
θ′� s′′�π∗

2

(·|s′′))�
Let ν∗ be any belief that induces π∗

2 on average, that is to say, for each s,

π∗
2(·|s)=

∫
π2�s∈Δ(A)

π2�s dν
∗
s (π2�s)�

Let β = 0. Then I(θ� s� ν∗�0) = u1(θ� s�π
∗
2(·|s)) for every θ� s, since the Gittins index

is equal to the myopic payoff when the decision-maker is perfectly impatient. This shows
I(θ′′� s′� ν∗�0)≥ maxs′′ 
=s′ I(θ′′� s′′� ν∗�0) and I(θ′� s′� ν∗�0)≤ maxs′′ 
=s′ I(θ′� s′′� ν∗�0). Q.E.D.

4. THE AGGREGATE SENDER AND RECEIVER RESPONSES

In this section, we will define and analyze the aggregate sender response R1 :Π2 →Π1

and the aggregate receiver response R2 :Π1 →Π2. Loosely speaking, these are the large-
populations learning analogs of the best-response functions in the static signaling game. If
we fix the aggregate play of −i population at π−i and run the learning model period after
period from an arbitrary initial state, the distribution of play in i population will approach
Ri[π−i]. Later, in Section 5, the fixed points of the pair (R1�R2) will characterize the
steady states of the learning system.

4.1. The Aggregate Sender Response

To formally define the aggregate sender response, we first introduce the one-period-
forward map.
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DEFINITION 3: The one-period-forward map for type θ, fθ : Δ(Yθ)×Π2 → Δ(Yθ), is

fθ[ψθ�π2]
(
yθ� (s� a)

) :=ψθ(yθ) · γ · 1
{
σθ(yθ)= s} ·π2(a|s)

and fθ[ψθ�π2](∅) := 1 − γ.

If the distribution over histories in the type θ population is ψθ and the receiver popu-
lation’s aggregate play is π2, the resulting distribution over histories in the type θ popu-
lation is fθ[ψθ�π2]. Specifically, there will be a 1 − γ mass of new type θ who will have
no history. Also, if the optimal first signal of a new type θ is s′, that is, if σθ(∅)= s′, then
fθ[ψθ�π2](s′� a′)= γ · (1 − γ) · π2(a

′|s′) new senders send s′ in their first match, observe
action a′ in response, and survive. In general, a type θ who has history yθ and whose pol-
icy σθ(yθ) prescribes playing s has π2(a|s) chance of having subsequent history (yθ� (s� a))
provided she survives until next period; the survival probability corresponds to the fac-
tor γ.

Write f Tθ for the T -fold application of fθ on Δ(Yθ), holding fixed some π2. Note that for
arbitrary states ψ and ψ′, if (yθ� (s� a)) is a length-1 history (i.e., yθ = ∅), then ψθ(yθ) =
ψ′
θ(yθ) because both states must assign mass 1−γ to ∅, so f 1

θ [ψθ�π2] and f 1
θ [ψ′

θ�π2] agree
on Yθ[1]. Iterating, for T = 2, f 2

θ [ψθ�π2] and f 2
θ [ψ′

θ�π2] agree on Yθ[2], because each
history in Yθ[2] can be written as (yθ� (s� a)) for yθ ∈ Yθ[1], and f 1

θ [ψθ�π2] and f 1
θ [ψ′

θ�π2]
match on all yθ ∈ Yθ[1]. Proceeding inductively, we can conclude that f Tθ (ψθ�π2) and
f Tθ (ψ

′
θ�π2) agree on all Yθ[t] for t ≤ T for any pair of type θ states ψθ and ψ′

θ. This
means limT→∞ f Tθ (ψθ�π2) exists and is independent of the initial state ψθ. Denote this
limit as ψπ2

θ . It is the long-run distribution over type θ histories induced by starting at an
arbitrary state and fixing the receiver population’s play at π2, as stated formally in the next
definition.

DEFINITION 4: The aggregate sender response R1 :Π2 →Π1 is defined by

R1[π2](s|θ) :=ψπ2
θ

(
yθ : σθ(yθ)= s)�

where ψπ2
θ := limT→∞ f Tθ (ψθ�π2) with ψθ any arbitrary θ state.

That is, R1[π2](·|θ) is the long-run aggregate behavior in the type θ population when
the receivers’ aggregate play is fixed at π2.

REMARK 1: Technically, R1 depends on g1� δ, and γ, just like σθ does. When relevant,
we will make these dependencies clear by adding the appropriate parameters as super-
scripts to R1, but we will mostly suppress them to lighten notation.

REMARK 2: Although the aggregate sender response is defined at the aggregate level,
R1[π2](·|θ) also describes the probability distribution of the play of a single type θ sender
over her lifetime when she faces receiver play drawn from π2 every period.14

14Observe that fθ[ψθ�π2] restricted to Yθ[1] gives the probability distribution over histories for a type θ
who uses σθ and faces play drawn from π2 for one period: it puts weight π2(a

′|s′) on history (s′� a′) where
s′ = σθ(∅). Similarly, f Tθ [ψθ�π2] restricted to Yθ[t] for any t ≤ T gives the probability distribution over histories
for someone who uses σθ and faces play drawn from π2 for t periods. Since ψπ2

θ assigns probability (1 − γ)γt
to the set of histories Yθ[t], R1[π2](·|θ)= σθ(ψπ2

θ ) is a weighted average over the distributions of period t play
(t = 1�2�3� � � �) of someone using σθ and facing π2, with weight (1 − γ)γt given to the period t distribution.
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4.2. Type Compatibility and the Aggregate Sender Response

The next lemma shows how type compatibility translates into restrictions on the aggre-
gate sender response for different types.

LEMMA 2: Suppose θ′ �s′ θ
′′. Then, for any regular prior g1, 0 ≤ δ�γ < 1, and any π2 ∈

Π2, we have R1[π2](s′|θ′)≥ R1[π2](s′|θ′′).

Theorem 1 showed that when θ′ �s′ θ
′′ and the two types share the same beliefs, if

θ′′plays s′, then θ′ must also play s′. But even though new agents of both types start with
the same prior g1, their beliefs may quickly diverge during the learning process due to σθ′
and σθ′′ prescribing different experiments after the same history. This lemma shows that
compatibility still imposes restrictions on the aggregate play of the sender population:
Regardless of the aggregate play π2 in the receiver population, the frequencies that s′
appears in the aggregate responses of different types are always co-monotonic with the
compatibility order �s′ .

To gain intuition for Lemma 2, consider two new senders with types θstrong and θweak

who are learning to play the beer-quiche game from Example 1. Suppose they have uni-
form priors over the responses to each signal, and that they face a sequence of receivers
programmed to play Fight after Beer and NotFight after Quiche. Since observing Fight
is the worst possible news about a signal’s payoff, the Gittins index of a signal decreases
when Fight is observed. Conversely, the Gittins index of a signal increases after each ob-
servation of NotFight.15 Thus, given the assumed play of the receivers, there are n1� n2 ≥ 0
such that type θstrong play Beer for n1 periods (and observe n1 instances of Fight) and then
switch to Quiche forever after, while type θweak will play Beer for n2 periods before switch-
ing to Quiche forever after. Now we claim that n1 ≥ n2. To see why, suppose instead that
n1 < n2, and let ν be the posterior belief about receivers’ aggregate play induced from n1

periods of observing Fight after Beer. After n1 periods, both types would share the belief
ν. Then, at belief ν, type θweak must play Beer while type θstrong plays Quiche, so signal Beer
must have the highest Gittins index for θweak but not for θstrong. But this would contradict
Theorem 1.

The proof of Lemma 2 relies on the similar idea of fixing a particular “programming”
of receiver play and studying the induced paths of experimentation for different types. In
the aggregate learning model, the sequence of responses that a given sender encounters
in her life depends on the realization of the random matching process, because different
receivers have different histories and respond differently to a given signal. We can index
all possible sequences of random matching realizations using a device we call the “pre-
programmed response path.” To show that more compatible types play a given signal more
often, it suffices to show this comparison holds on each pre-programmed response path,
thus coupling the learning processes of types θ′ and θ′′. We will show that the intuition
above extends to signaling games with any number of signals and to any pre-programmed
response path.

DEFINITION 5: A pre-programmed response path a = (a1�s� a2�s� � � � � )s∈S is an element in
×s∈S(A∞).

A pre-programmed response path is an |S|-tuple of infinite sequences of receiver ac-
tions, one sequence for each signal. For a given pre-programmed response path a, we can

15This follows from Bellman’s (1956) Theorem 2 on Bernoulli bandits.
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imagine starting with a new type θ and generating receiver play each period in the follow-
ing programmatic manner: when the sender plays s for the jth time, respond with receiver
action aj�s. (If the sender sends s′′ five times and then sends s′ 
= s′′, the response she gets
to s′ is a1�s′ , not a6�s′ .) For a type θ who applies σθ each period, a induces a deterministic
history of experiments and responses, which we denote yθ(a). The induced history yθ(a)
can be used to calculate R1[a](·|θ), the distribution of signals over the lifetime of a type θ
induced by the pre-programmed response path a. Namely, R1[a](·|θ) is simply a mixture
over all signals sent along the history yθ(a), with weight (1 − γ)γt−1 given to the signal in
period t.

Now consider a type θ facing actions generated i.i.d. from the receiver behavior strategy
π2 each period, as in the interpretation of R1 in Remark 2. This data-generating process is
equivalent to drawing a random pre-programmed response path a at time 0 according to
a suitable distribution, then producing all receiver actions using a. That is, R1[π2](·|θ)=∫

R1[a](·|θ)dπ2(a), where we abuse notation and use dπ2(a) to denote the distribution
over pre-programmed response paths associated with π2. Importantly, any two types θ′

and θ′′ face the same distribution over pre-programmed response paths, so to prove the
proposition, it suffices to show R1[a](s′|θ′)≥ R1[a](s′|θ′′) for all a.

PROOF OF LEMMA 2: For t ≥ 0, write ytθ for the truncation of infinite history yθ to the
first t periods, with y∞

θ := yθ. Given a finite or infinite history ytθ for type θ, the signal
counting function #(s|ytθ) returns how many times signal s has appeared in ytθ. (We need
this counting function since the receiver play generated by a pre-programmed response
path each period depends on how many times each signal has been sent so far.)

As discussed above, we need only show R1[a](s′|θ′)≥ R1[a](s′|θ′′). Let a be given and
write Tθj for the period in which type θ sends signal s′ for the jth time in the induced
history yθ(a). If no such period exists, then set Tθj = ∞. Since R1[a](·|θ) is a weighted
average over signals in yθ(a) with decreasing weights given to later signals, to prove
R1[a](s′|θ′)≥ R1[a](s′|θ′′) it suffices to show that Tθ′

j ≤ Tθ′′
j for every j. Towards this goal,

we will prove a sequence of statements by induction:

Statement j: Provided Tθ′′
j is finite, #(s′′ | yT

θ′
j

θ′ (a))≤ #(s′′ | yT
θ′′
j

θ′′ (a)) for all s′′ 
= s′.
For every j where Tθ′′

j < ∞, Statement j implies that the number of periods type
θ′ spent sending each signal s′′ 
= s′ before sending s′ for the jth time is fewer than the
number of periods θ′′ spent doing the same. Therefore, it follows that θ′ sent s′ for the
jth time sooner than θ′′ did, that is, Tθ′

j ≤ Tθ′′
j . Finally, if Tθ′′

j = ∞, then evidently Tθ′
j ≤

∞ = Tθ′′
j .

It now remains to prove the sequence of statements by induction.
Statement 1 is the base case. By way of contradiction, suppose Tθ′′

1 <∞ and

#
(
s′′ | yTθ

′
1
θ′ (a)

)
>#

(
s′′ | yTθ

′′
1
θ′′ (a)

)
for some s′′ 
= s′. Then there is some earliest period t∗ < Tθ′

1 where

#
(
s′′ | yt∗θ′ (a)

)
>#

(
s′′ | yTθ

′′
1
θ′′ (a)

)
�

where type θ′ played s′′ in period t∗, σθ′(yt
∗−1
θ′ (a))= s′′.
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But by construction, by the end of period t∗ −1, type θ′ has sent s′′ exactly as many times
as type θ′′ has sent it by period Tθ′′

1 − 1, so that

#
(
s′′ | yt∗−1

θ′ (a)
)= #

(
s′′ | yTθ

′′
1 −1
θ′′ (a)

)
�

Furthermore, neither type has sent s′ yet, so also

#
(
s′ | yt∗−1

θ′ (a)
)= #

(
s′ | yTθ

′′
1 −1
θ′′ (a)

)
�

Therefore, type θ′ holds the same posterior over the receiver’s reaction to signals s′ and
s′′ at period t∗ − 1 as type θ′′ does at period Tθ′′

1 − 1. So16 by Theorem 1,

s′ ∈ arg max
ŝ∈S

I
(
θ′′� ŝ� y

Tθ
′′

1 −1
θ′′ (a)

) =⇒ I
(
θ′� s′� yt

∗−1
θ′ (a)

)
> I

(
θ′� s′′� yt

∗−1
θ′ (a)

)
� (4)

However, by construction of Tθ′′
1 , we have σθ′′(y

Tθ
′′

1 −1
θ′′ (a)) = s′. By the optimality of the

Gittins index policy, the left-hand side of Equation (4) is satisfied. But, again by the
optimality of the Gittins index policy, the right-hand side of Equation (4) contradicts
σθ′(yt

∗−1
θ′ (a))= s′′. Therefore, we have proven Statement 1.

Now suppose Statement j holds for all j ≤K. We show StatementK+1 also holds.
If Tθ′′

K+1 is finite, then Tθ′′
K is also finite. The inductive hypothesis then shows

#
(
s′′ | yTθ

′
K
θ′ (a)

)≤ #
(
s′′ | yTθ

′′
K
θ′′ (a)

)
for every s′′ 
= s′. Suppose there is some s′′ 
= s′ such that

#
(
s′′ | yTθ

′
K+1
θ′ (a)

)
>#

(
s′′ | yTθ

′′
K+1
θ′′ (a)

)
�

Together with the previous inequality, this implies type θ′ played s′′ for the [#(s′′ |
y
Tθ

′′
K+1
θ′′ (a)) + 1]th time sometime between playing s′ for the Kth time and playing s′ for

the (K + 1)th time. That is, if we put

t∗ := min
{
t : #

(
s′′ | ytθ′(a)

)
>#

(
s′′ | yTθ

′′
K+1
θ′′ (a)

)}
�

then Tθ′
K < t

∗ < Tθ
′

K+1. By the construction of t∗,

#
(
s′′ | yt∗−1

θ′ (a)
)= #

(
s′′ | yTθ

′′
K+1−1

θ′′ (a)
)
�

and also

#
(
s′ | yt∗−1

θ′ (a)
)=K = #

(
s′ | yTθ

′′
K+1−1

θ′′ (a)
)
�

Therefore, type θ′ holds the same posterior over the receiver’s reaction to signals s′ and
s′′ at period t∗ − 1 as type θ′′ does at period Tθ′′

K+1 − 1. As in the base case, we can invoke
Theorem 1 to show that it is impossible for θ′ to play s′′ in period t∗ while θ′′ plays s′ in
period Tθ′′

K+1. This shows Statement j is true for every j by induction. Q.E.D.

16In the following equation and elsewhere in the proof, we abuse notation and write I(θ� s� y) to mean
I(θ� s�g1(·|y)�δγ), which is the Gittins index of type θ for signal s at the posterior obtained from updating the
prior g1 using history y , with effective discount factor δγ.
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4.3. The Aggregate Receiver Response

We now turn to the receivers’ problem. Each new receiver thinks he is facing a fixed but
unknown aggregate sender behavior strategy π1, with belief over π1 given by his regular
prior g2. To maximize his expected utility, the receiver must learn to infer the type of the
sender from the signal, using his personal experience.

Unlike the senders whose optimal policies may involve experimentation, the receivers’
problem only involves passive learning. Since the receiver observes the same information
in a match regardless of his action, the optimal policy σ2(y2) simply best responds to the
posterior belief induced by history y2.

DEFINITION 6: The one-period-forward map for receivers f2 : Δ(Y2)×Π1 → Δ(Y2) is

f2[ψ2�π1]
(
y2� (θ� s)

) :=ψ2(y2) · γ · λ(θ) ·π1(s|θ)
and f2(∅) := 1 − γ.

As with the one-period-forward maps fθ for senders, f2[ψ2�π1] describes the new dis-
tribution over receiver histories tomorrow if the distribution over histories in the re-
ceiver population today is ψ2 and the sender population’s aggregate play is π1. We write
ψ
π1
2 := limT→∞ f T2 (ψ2�π1) for the long-run distribution over Y2 induced by fixing sender

population’s play at π1, which is independent of the particular choice of initial state ψ2.

DEFINITION 7: The aggregate receiver response R2 :Π1 →Π2 is

R2[π1](a|s) :=ψπ1
2

(
y2 : σ2(y2)(s)= a)�

where ψπ1
2 := limT→∞ f T2 (ψ2�π1) with ψ2 any arbitrary receiver state.

We are interested in the extent to which R2[π1] responds to inequalities of the form
π1(s

′|θ′)≥ π1(s
′|θ′′) embedded in π1, such as those generated when θ′ �s′ θ

′′ (Lemma 2).
To this end, for any two types θ′� θ′′, we define Pθ′�θ′′ as those beliefs where the odds ratio
of θ′ to θ′′ exceeds their prior odds ratio, that is,

Pθ′�θ′′ :=
{
p ∈ Δ(Θ) : p

(
θ′′)

p
(
θ′) ≤ λ

(
θ′′)

λ
(
θ′) }� (5)

If π1(s
′|θ′)≥ π1(s

′|θ′′), π1(s
′|θ′) > 0, and receiver knows π1, then receiver’s posterior be-

lief about sender’s type after observing s′ falls in the set Pθ′�θ′′ . The next lemma shows
that under the additional provisions that π1(s

′|θ′) is “large enough” and receivers are
sufficiently long-lived, R2[π1] will best respond to Pθ′�θ′′ with high probability when s′ is
sent.

For P ⊆ Δ(Θ), we let17 BR(P� s) :=⋃
p∈P(arg maxa′∈A u2(p� s�a

′)); this is the set of best
responses to s supported by some belief in P .

LEMMA 3: Let regular prior g2, types θ′� θ′′, and signal s′ be fixed. For every ε > 0, there
exist C > 0 and γ < 1 so that for any 0 ≤ δ < 1, γ ≤ γ < 1, and n≥ 1, if π1(s

′|θ′)≥ π1(s
′|θ′′)

and π1(s
′|θ′)≥ (1 − γ)nC, then

R2[π1]
(
BR

(
Pθ′�θ′′� s′

)|s′)≥ 1 − 1
n

− ε�

17We abuse notation here and write u2(p� s�a
′) to mean

∑
θ∈Θ u2(θ� s�a

′) ·p(θ).
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This lemma gives a lower bound on the probability that R2[π1] best responds to Pθ′�θ′′
after signal s′. Note that the bound only applies for survival probabilities γ that are close
enough to 1, because when receivers have short lifetimes, they need not get enough data
to outweigh their prior. Note also that more of the receivers learn the compatibility con-
dition when π1(s

′|θ′) is large compared to (1 − γ) and almost all of them do in the limit
of n→ ∞�The proof of Lemma 3 relies on Theorem 2 from Fudenberg, He, and Imhof
(2017) about updating Bayesian posteriors after rare events, where the rare event corre-
sponds to observing θ′ play s′. The details are in Appendix A.3.

To interpret the condition π1(s
′|θ′) ≥ (1 − γ)nC, recall that an agent with survival

chance γ has a typical lifespan of 1
1−γ . If π1 describes the aggregate play in the sender

population, then on average a type θ′ plays s′ for 1
1−γ · π1(s

′|θ′) periods in her life. So
when a typical type θ′ plays s′ for nC periods, this lemma provides a bound of 1 − 1

n
− ε

on the share of the receiver responses that lie in BR(Pθ′�θ′′� s′). Note that the hypothesis
θ′ plays s′ for nC periods does not require that π1(s

′|θ′) is bounded away from 0 as γ→ 1.
To preview, Lemma 4 in the next section will establish that signals that are not weakly
equilibrium dominated for a given type are played sufficiently often that Lemma 3 has
bite when both δ and γ are close to 1.

5. STEADY-STATE IMPLICATIONS FOR AGGREGATE PLAY

Section 4 separately examined the senders’ and receivers’ learning problems. In this
section, we turn to the two-sided learning problem. We will first define steady-state strat-
egy profiles, which are signaling game strategy profiles π∗ where π∗

1 and π∗
2 are mutual

aggregate responses, and then characterize the steady states using our previous results.

5.1. Steady States, δ-Stability, and Patient Stability

We introduced the one-period-forward maps fθ and f2 in Section 4, which describe the
deterministic transition between state ψt this period to state ψt+1 next period through
the learning dynamics and the birth–death process. More precisely, ψt+1

θ = fθ(ψtθ�σ2(ψ
t
2))

and ψt+1
2 = f2(ψ

t
2� (σθ(ψ

t
θ))θ∈Θ). A steady state is a fixed point ψ∗ of this transition map.

DEFINITION 8: A state ψ∗ is a steady state if ψ∗
θ = fθ(ψ

∗
θ�σ2(ψ

∗
2)) for every θ and

ψ∗
2 = f2(ψ

∗
2� (σθ(ψ

∗
θ))θ∈Θ). The set of all steady states for regular prior g and 0 ≤ δ�γ < 1

is denoted Ψ ∗(g�δ�γ), while the set of steady-state strategy profiles is Π∗(g�δ�γ) :=
{σ(ψ∗) :ψ∗ ∈Ψ ∗(g�δ�γ)}.

The strategy profiles associated with steady states represent time-invariant distributions
of play, as the information lost when agents die each period exactly balances out the
information agents gain through learning that period. This means the exchangeability
assumption of the learners will be satisfied in any steady state.

We now give an equivalent characterization Π∗(g�δ�γ) in terms of R1 and R2. The
proof is in Appendix A.4.

PROPOSITION 2: π∗ ∈Π∗(g�δ�γ) if and only if Rg�δ�γ
1 (π∗

2)= π∗
1 and Rg�δ�γ

2 (π∗
1)= π∗

2 .

(Note that here we make the dependence of R1 and R2 on parameters (g�δ�γ) explicit
to avoid confusion.) That is, a steady-state strategy profile is a pair of mutual aggregate
replies.
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The next proposition guarantees that there always exists at least one steady-state strat-
egy profile.

PROPOSITION 3: Π∗(g�δ�γ) is nonempty and compact in the norm topology.

The proof is in the Supplemental Material (Fudenberg and He (2018)). We establish
that Ψ ∗(g�δ�γ) is nonempty and compact in the �1 norm on the space of distributions,
which immediately implies the same properties for Π∗(g�δ�γ). Intuitively, if lifetimes
are finite, the set of histories is finite, so the set of states is of finite dimension. Here the
one-period-forward map f = ((fθ)θ∈Θ� f2) is continuous, so the usual version of Brouwer’s
fixed-point theorem applies. With geometric lifetimes, very old agents are rare, so trun-
cating the agents’ lifetimes at some large T yields a good approximation. Instead of using
these approximations directly, our proof shows that, under the �1 norm, f is continuous,
and that (because of the geometric lifetimes) the feasible states form a compact locally
convex Hausdorff space. This lets us appeal to a fixed-point theorem for that domain.

We now focus on the iterated limit

lim
δ→1

lim
γ→1

Π∗(g�δ�γ)�

that is, the set of steady-state strategy profiles for δ and γ near 1, where we first send γ to
1 holding δ fixed, and then send δ to 1.

DEFINITION 9: For each 0 ≤ δ < 1, a strategy profile π∗ is δ-stable under g if there
is a sequence γk → 1 and an associated sequence of steady-state strategy profiles π(k) ∈
Π∗(g�δ�γk), such that π(k) → π∗. Strategy profile π∗ is patiently stable under g if there is
a sequence δk → 1 and an associated sequence of strategy profiles π(k) where each π(k)
is δk-stable under g and π(k) → π∗. Strategy profile π∗ is patiently stable if it is patiently
stable under some regular prior g.

Heuristically, patiently stable strategy profiles are the limits of learning outcomes when
agents become infinitely patient (so that senders are willing to make many experiments)
and long lived (so that agents on both sides can learn enough for their data to out-
weigh their prior). As in past work on steady-state learning (Fudenberg and Levine (1993,
2006)), the reason for this order of limits is to ensure that most agents have enough data
that they stop experimenting and play myopic best responses.18 We do not know whether
our results extend to the other order of limits; we explain the issues involved below, after
sketching the intuition for Proposition 5.

5.2. Preliminary Results on δ-Stability and Patient Stability

When γ is near 1, agents correctly learn the consequences of the strategies they play
frequently. But for a fixed patience level, they may choose to rarely or never experiment,
and so can maintain incorrect beliefs about the consequences of strategies that they do not
play. The next result formally states this, which parallels Fudenberg and Levine’s (1993)
result that δ-stable strategy profiles are self-confirming equilibria.

18If agents did not eventually stop experimenting as they age, then even if most agents have approximately
correct beliefs, aggregate play need not be close to a Nash equilibrium because most agents would not be
playing a (static) best response to their beliefs.
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PROPOSITION 4: Suppose strategy profile π∗ is δ-stable under a regular prior. Then, for
every type θ and signal s with π∗

1(s|θ) > 0, s is a best response to some π2 ∈Π2 for type θ,
and furthermore, π2(·|s) = π∗

2(·|s). Also, for any signal s such that π∗
1(s|θ) > 0 for at least

one type θ, π∗
2(·|s) is supported on pure best responses to the Bayesian belief generated by π∗

1
after s.

We prove this result in the Supplemental Material (Fudenberg and He (2018)). The
idea of the proof is the following: If signal s has positive probability in the limit, then it is
played many times by the senders, so the receivers eventually learn the correct posterior
distribution for θ given s. As the receivers have no incentive to experiment, their actions
after s will be a best response to this correct posterior belief. For the senders, suppose
π∗

1(s|θ) > 0� but s is not a best response for type θ to any π2 ∈Π2 that matches π∗
2(·|s).

Yet if a sender has played s many times then with high probability her belief about π2(·|s)
is close to π∗

2(·|s), so playing s is not myopically optimal. This would imply that type θ has
persistent option value for signal s, which contradicts the fact that this option value must
converge to 0 with the sample size.

REMARK 3: This proposition says that each sender type is playing a best response to
a belief about the receiver’s play that is correct on the equilibrium path, and that the
receivers are playing an aggregate best response to the aggregate play of the senders. Thus
the δ-stable outcomes are a version of self-confirming equilibrium where different types
of sender are allowed to have different beliefs. Moreover, as the next example shows, this
sort of heterogeneity in the senders’ beliefs about the aggregate strategy of the receivers
can endogenously arise in a δ-stable strategy profile even when all types of new senders
start with the same prior over how the receivers play.19

EXAMPLE 2: Consider the following game:

The receiver is indifferent between all responses. Fix any regular prior g2 for the re-
ceiver and any regular prior g(s

′′)
1 for the sender. Let g(s

′)
1 be Beta(1�3) on a′ and a′′,

19Dekel, Fudenberg, and Levine (2004) defined type-heterogeneous self-confirming equilibrium in static
Bayesian games. As they noted, this sort of heterogeneity is natural when the type of each agent is fixed, but
not if each agent’s type is drawn i.i.d. in each period. To extend their definition to signaling games, we can define
the “signal functions” yi(a�θ) from that paper to respect the extensive form of the game. See also Fudenberg
and Kamada (2018).
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respectively. We claim that it is δ-stable when δ= 0 for both types to send s′′ and for the
receiver to respond to every signal with a′, which is a type-heterogeneous rationalizable
self-confirming equilibrium. However, this pooling behavior cannot occur in a Nash equi-
librium or in a unitary self-confirming equilibrium, where both sender types must hold the
same belief about how the receiver responds to s′.

To establish this claim, note that since δ= 0, each sender plays the myopically optimal
signal after every history. For any γ, there is a steady state where the receivers’ policy
responds to every signal with a′ after every history, type θ′′ senders play s′′ after every
history and never update their prior belief about how receivers react to s′, and type θ′

senders with fewer than 6 periods of experience play s′ but switch to playing s′′ forever
starting at age 7. The behavior of the θ′ agents is optimal because after k periods of
playing s′ and seeing response a′ every period, the sender’s posterior belief about π2(·|s′)
is Beta(1 + k�3), so the expected payoff from playing s′ next period is

1 + k
4 + k(−1)+ 3

4 + k(2)�

This expression is positive when 0 ≤ k ≤ 5 but negative when k = 6. The fraction of
type θ′ aged 6 and below approaches 0 as γ→ 1, hence we have constructed a sequence
of steady-state strategy profiles converging to the s′′ pooling equilibrium. So even though
both types start with the same prior g1, their beliefs about how the receivers react to s′
eventually diverge.

In contrast to the plethora of δ-stable profiles, we now show that only Nash equilibrium
profiles can be steady-state outcomes as δ tends to 1. Moreover, this limit also rules out
strategy profiles in which the sender’s strategy can only be supported by the belief that the
receiver would play a dominated action in response to some of the unsent signals.

DEFINITION 10: In a signaling game, a perfect Bayesian equilibrium with heterogeneous
off-path beliefs is a strategy profile (π∗

1 �π
∗
2) such that:

• For each θ ∈Θ, u1(θ;π∗)= maxs∈S u1(θ� s�π
∗
2(·|s)).• For each on-path signal s, u2(p

∗(·|s)� s�π∗
2(·|s))= maxâ∈A u2(p

∗(·|s)� s� â).
• For each off-path signal s and each a ∈ A with π∗

2(a|s) > 0, there exists a belief
p ∈ Δ(Θ) such that u2(p� s�a)= maxâ∈A u2(p� s� â).
Here u1(θ;π∗) refers to type θ’s payoff under π∗, and p∗(·|s) is the Bayesian posterior
belief about sender’s type after signal s, under strategy π∗

1 .

The first two conditions imply that the profile is a Nash equilibrium. The third condition
resembles that of perfect Bayesian equilibrium, but is somewhat weaker as it allows the
receiver’s play after an off-path signal s to be a mixture over several actions, each of
which is a best response to a different belief about the sender’s type. This means π∗

2(·|s) ∈
Δ(BR(Δ(Θ)� s)), but π∗

2(·|s) itself may not be a best response to any unitary belief about
the sender’s type.

PROPOSITION 5: If strategy profile π∗ is patiently stable, then it is a perfect Bayesian equi-
librium with heterogeneous off-path beliefs.

PROOF: In the Supplemental Material (Fudenberg and He (2018)), we prove that pa-
tiently stable profiles must be Nash equilibria. This argument follows the proof strategy
of Fudenberg and Levine (1993), which derived a contradiction via excess option values.
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In outline, if π∗ is patiently stable, each player’s strategy is a best response to a belief
that is correct about the opponent’s on-path play. Thus, if π∗ is not a Nash equilibrium,
some type should perceive a persistent option value to experimenting with some signal
that she plays with probability 0. But this would contradict the fact that the option values
evaluated at sufficiently long histories must go to 0. We now explain why a patiently stable
profile π∗ must satisfy the third condition in Definition 10. After observing any history y2,
a receiver who started with a regular prior thinks every signal has positive probability in
his next match. So, his optimal policy prescribes for each signal s a best response to that
receiver’s posterior belief about the sender’s type upon seeing signal s after history y2.
For any regular prior g, 0 ≤ δ�γ < 1, and any sender aggregate play π1, we thus deduce
Rg�δ�γ

2 [π1](·|s) is entirely supported on BR(Δ(Θ)� s). This means the same is true about
the aggregate receiver response in every steady state and hence in every patiently stable
strategy profile. Q.E.D.

In Fudenberg and Levine (1993), this argument relies on the finite lifetime of the agents
only to ensure that “almost all” histories are long enough, by picking a large enough
lifetime. We can achieve the analogous effect in our geometric-lifetime model by picking
γ close to 1. Our proof uses the fact that if δ is fixed and γ → 1, then the number of
experiments that a sender needs to exhaust her option value is negligible relative to her
expected lifespan, so that most senders play approximate best responses to their current
beliefs. The same conclusion does not hold if we fix γ and let δ→ 1, even though the
optimal sender policy only depends on the product δγ, because for a fixed sender policy
the induced distribution on sender play depends on γ but not on δ.

5.3. Patient Stability Implies the Compatibility Criterion

Proposition 5 allows the receiver to sustain his off-path actions using any belief p ∈
Δ(Θ). We now turn to our main result, which focuses on refining off-path beliefs. We
prove that patient stability selects a strict subset of the Nash equilibria, namely, those that
satisfy the compatibility criterion.

DEFINITION 11: For a fixed strategy profile π∗, let u1(θ;π∗) denote the payoff to type
θ under π∗, and let

J
(
s�π∗) :=

{
θ ∈Θ : max

a∈A
u1(θ� s�a) > u1

(
θ;π∗)}

be the set of types for which some response to signal s is strictly better than their payoff
under π∗. Signal s is weakly equilibrium dominated for types in the complement of J(s�π∗).

The admissible beliefs at signal s under profile π∗ are

P
(
s�π∗) :=

⋂{
Pθ′�θ′′ : θ′ �s θ

′′ and θ′ ∈ J(s�π∗)}�
where Pθ′�θ′′ is defined in Equation (5).

That is, P(s�π∗) is the joint belief restriction imposed by a family of Pθ′�θ′′ for (θ′� θ′′)
satisfying two conditions: θ′ is more type-compatible with s than θ′′, and furthermore,
the more compatible type θ′ belongs to J(s�π∗). If there are no pairs (θ′� θ′′) satisfying
these two conditions, then (by convention of intersection over no elements) P(s�π∗) is
defined asΔ(Θ). In any signaling game and for any π∗, the set P(s�π∗) is always nonempty
because it always contains the prior λ.
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DEFINITION 12: Strategy profile π∗ satisfies the compatibility criterion if π2(·|s) ∈
Δ(BR(P(s�π∗)� s)) for every s.

Like divine equilibrium but unlike the Intuitive Criterion or Cho and Kreps’s (1987)
D1 criterion, the compatibility criterion says only that some signals should not increase
the relative probability of “implausible” types, as opposed to requiring that these types
have probability 0.

One might imagine a version of the compatibility criterion where the belief restriction
Pθ′�θ′′ applies whenever θ′ �s θ

′′. To understand why we require the additional condition
that θ′ ∈ J(s�π∗) in the definition of admissible beliefs, recall that Lemma 3 only gives a
learning guarantee in the receiver’s problem when π1(s|θ′) is “large enough” for the more
type-compatible θ′. In the extreme case where s is a strictly dominated signal for θ′, she
will never play it during learning. It turns out that if s is weakly equilibrium dominated for
θ′, then θ′ may still not experiment very much with it. On the other hand, the next lemma
provides a lower bound on the frequency that θ′ experiments with s′ when θ′ ∈ J(s′�π∗)
and δ and γ are close to 1.

LEMMA 4: Fix a regular prior g and a strategy profile π∗ where, for some type θ′ and signal
s′, θ′ ∈ J(s′�π∗). There exist a number ε ∈ (0�1) and threshold functions δ̄ : N → (0�1) and
γ̄ :N× (0�1)→ (0�1) such that whenever π ∈Π∗(g�δ�γ) with δ≥ δ̄(N) and γ ≥ γ̄(N�δ)
and π is no more than ε away from π∗ in L1 distance,20 we have π1(s

′|θ′)≥ (1 − γ) ·N .

Note that since π1(s|θ′) is between 0 and 1, we know that (1 − γ̄(N�δ)) · N < 1 for
each N .

The proof of this lemma is in the Supplemental Material (Fudenberg and He (2018)).
To gain an intuition for it, suppose that not only is s′ equilibrium undominated in π∗,
but furthermore, s′ can lead to the highest signaling game payoff for type θ′ under some
receiver response a′. Because the prior is non-doctrinaire, the Gittins index of each signal
in the learning problem approaches its highest possible payoff in the stage game as the
sender becomes infinitely patient. Therefore, for every N ∈ N, when γ and δ are close
enough to 1, a new type θ′ will play s′ in each of the first N periods of her life, regardless
of what responses she receives during that time. These N periods account for roughly
(1 − γ) ·N fraction of her life, proving the lemma in this special case. It turns out that
even if s′ does not lead to the highest potential payoff in the signaling game, long-lived
players will have a good estimate of their steady-state payoff. So, type θ′ will still play any s′
that is equilibrium undominated in strategy profile π∗ at leastN times in any steady states
that are sufficiently close to π∗, though these N periods may not occur at the beginning
of her life.

THEOREM 2: Every patiently stable strategy profile π∗ satisfies the compatibility criterion.

The proof combines Lemma 2, Lemma 3, and Lemma 4. Lemma 2 shows that types
that are more compatible with s′ play it more often. Lemma 4 says that types for whom
s′ is not weakly equilibrium dominated will play it “many times.” Finally, Lemma 3 shows

20The L1 distance is

d
(
π�π∗)=

∑
θ∈Θ

∑
s∈S

∣∣π1(s|θ)−π∗
1 (s|θ)

∣∣+∑
s∈S

∑
a∈A

∣∣π2(a|s)−π∗
2 (a|s)

∣∣�
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that the “many times” here is sufficiently large that most receivers correctly believe that
more compatible types play s′ more than less compatible types do, so their posterior odds
ratio for more versus less compatible types exceeds the prior ratio.

PROOF OF THEOREM 2: Suppose π∗ is patiently stable under regular prior g. Fix an s′
and an action â /∈ BR(P(s′�π∗)� s′). Let h > 0 be given. We will show that π∗

2(â|s′) < h.
Since the choices of s′, â, and h> 0 are arbitrary, we will have proven the theorem.

Step 1: Setting some constants.
In the statement of Lemma 3, for each pair θ′� θ′′ such that θ′ �s′ θ

′′ and θ′ ∈ J(s′�π∗),
put ε= h

2|Θ|2 and find Cθ′�θ′′ and γ
θ′�θ′′ so that the result holds. Let C be the maximum of

all such Cθ′�θ′′ and γ be the maximum of all such γ
θ′�θ′′ . Also find n≥ 1 so that

1 − 1
n
> 1 − h

2|Θ|2 � (6)

In the statement of Lemma 4, for each θ′ such that θ′ �s′ θ
′′ for at least one θ′′, find

εθ′� δ̄θ′(nC), γ̄θ′(nC�δ) so that the lemma holds. Write ε∗ > 0 as the minimum of all such
εθ′ and let δ̄∗(nC) and γ̄∗(nC�δ) represent the maximum of δθ′ and γθ′ across such θ′.

Step 2: Finding a steady-state profile with large δ�γ that approximates π∗.
Since π∗ is patiently stable under g, there exists a sequence of strategy profiles π(j) →

π∗ where π(j) is δj-stable under g with δj → 1. Each π(j) can be written as the limit of
steady-state strategy profiles. That is, for each j, there exist γj�k → 1 and a sequence of
steady-state profiles π(j�k) ∈Π∗(g�δj�γj�k) such that limk→∞π(j�k) = π(j).

The convergence of the array π(j�k) to π∗ means we may find j ∈ N and function k(j)
so that whenever j ≥ j and k ≥ k(j), π(j�k) is no more than min(ε∗� h

2|Θ|2 ) away from π∗.
Find j◦ ≥ j large enough so δ◦ := δj◦ > δ̄∗(nC), and then find a large enough k◦ >k(j◦) so
that γ◦ := γj◦�k◦ >max(γ̄∗(nC�δ◦)�γ). So we have identified a steady-state profile π◦ :=
π(j

◦�k◦) ∈Π∗(g�δ◦�γ◦) which approximates π∗ to within min(ε∗� h
2|Θ|2 ).

Step 3: Applying properties of R1 and R2.
For each pair θ′� θ′′ such that θ′ �s′ θ

′′ and θ′ ∈ J(s′�π∗), we will bound the probability
that π◦

2(·|s′) does not best respond to Pθ′�θ′′ by h
|Θ|2 . Since there are at most |Θ| · (|Θ| − 1)

such pairs in the intersection defining P(s′�π∗), this would imply that π◦
2(â|s′) < [|Θ| ·

(|Θ| − 1)] · h
|Θ|2 since â /∈ BR(P(s′�π∗)� s′). And since π◦

2 is no more than h
2|Θ|2 away from

π2, this would show π2(â|s′) < h.
By construction, π◦ is closer than εθ′ to π∗, and furthermore, δ◦ ≥ δ̄θ′(nC) and γ◦ ≥

γ̄θ′(nC�δ◦). By Lemma 4, π◦
1(s

′|θ′) ≥ nC(1 − γ◦). At the same time, π◦
1 = R1[π◦

2 ] and
θ′ �s′ θ

′′, so Lemma 2 implies that π◦
1(s

′|θ′)≥ π◦
1(s

′|θ′′). Turning to the receiver side, π◦
2 =

R2[π◦
1 ] with π◦1 satisfying the conditions of Lemma 3 associated with ε= h

2|Θ|2 and γ◦ ≥ γ.
Therefore, we conclude

π◦
2

(
BR

(
Pθ′�θ′′� s′

)|s′)≥ 1 − 1
n

− h

2|Θ|2 �

But by construction of n in Equation (6), 1 − 1
n
> 1 − h

2|Θ|2 . So the LHS is at least 1 − h
|Θ|2 ,

as desired. Q.E.D.

REMARK 4: More generally, consider any model for our populations of agents with ge-
ometrically distributed lifetimes that generates aggregate response functions R1 and R2.
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Defining the steady states under (g�δ�γ) as the strategy profiles π∗ such that Rg�δ�γ
1 (π∗

2)=
π∗

1 and Rg�δ�γ
2 (π∗

1)= π∗
2 , the proof of Theorem 2 applies to the patiently stable profiles of

the new learning model provided that R1 satisfies the conclusion of Lemma 2, R2 satisfies
the conclusion of Lemma 3, and Lemma 4 is valid for (θ′� s′) pairs such that θ′ �s′ θ

′′ for
at least one type θ′′and θ′ ∈ J(s′�π∗).

We outline two such more general learning models below. (The proof is in the Supple-
mental Material (Fudenberg and He (2018)).)

COROLLARY 1: With either of the following modifications of the steady-state learning
model from Section 2, every patiently stable strategy profile still satisfies the compatibility cri-
terion.

(i) Heterogeneous priors. There is a finite collection of regular sender priors {g1�k}nk=1 and
a finite collection of regular receiver priors {g2�k}nk=1. Upon birth, an agent is endowed with a
random prior, where the distributions over priors are μ1 and μ2 for senders and receivers. An
agent’s prior is independent of her payoff type, and furthermore, no one ever observes another
person’s prior.

(ii) Social learning. Suppose 1 − α fraction of the senders are “normal learners” as de-
scribed in Section 2, but the remaining 0< α< 1 fraction are “social learners.” At the end of
each period, a social learner can observe the extensive-form strategies of her matched receiver
and of c > 0 other matches sampled uniformly at random. Each sender knows whether she
is a normal learner or a social learner upon birth, which is uncorrelated with her payoff type.
Receivers cannot distinguish between the two kinds of senders.

EXAMPLE 1—Continued: The beer-quiche game of Example 1 has two components
of Nash equilibria: “beer-pooling equilibria” where both types play Beer with probability
1, and “quiche-pooling equilibria” where both types play Quiche with probability 1. In a
quiche-pooling equilibrium π∗, type θstrong’s equilibrium payoff is 2, so θstrong ∈ J(Beer�π∗)
since θstrong’s highest possible payoff under Beer is 3, and we have already shown that
θstrong �Beer θweak. So,

P
(
Beer�π∗)=

{
p ∈ Δ(Θ) : p(θweak)

p(θstrong)
≤ λ(θweak)

λ(θstrong)
= 1/9

}
�

Fight is not a best response after Beer to any such belief, so equilibria in which Fight
occurs with positive probability after Beer do not satisfy the compatibility criterion, and
thus no quiche-pooling equilibrium is patiently stable. Since the set of patiently stable
outcomes is a nonempty subset of the set of Nash equilibria, pooling on beer is the unique
patiently stable outcome.

By Corollary 1, quiche-pooling equilibria are still not patiently stable in more general
learning models involving either heterogeneous priors or social learners.

5.4. Patient Stability and Equilibrium Dominance

In generic signaling games, equilibria where the receiver plays a pure strategy must
satisfy a stronger condition than the compatibility criterion to be patiently stable.

DEFINITION 13: Let

J̃
(
s�π∗) :=

{
θ ∈Θ : max

a∈A
u1(θ� s�a)≥ u1

(
θ;π∗)}�
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If J̃(s′�π∗) is nonempty, define the strongly admissible beliefs at signal s′ under profile π∗

to be

P̃
(
s′�π∗) := Δ

(
J̃
(
s′�π∗)) ∩ {Pθ′�θ′′ : θ′ �s′ θ

′′}�
where Pθ′�θ′′ is defined in Equation (5). Otherwise, define P̃(s′�π∗) := Δ(Θ).

Here, J̃(s�π∗) is the set of types for which some response to signal s is at least as good as
their equilibrium payoff under π∗—that is, the set of types for whom s is not equilibrium
dominated in the sense of Cho and Kreps (1987). Note that P̃ , unlike P , assigns prob-
ability 0 to equilibrium-dominated types, which is the belief restriction of the Intuitive
Criterion.

DEFINITION 14: A Nash equilibrium π∗ is on-path strict for the receiver if, for every
on-path signal s∗, π2(a

∗|s∗)= 1 for some a∗ ∈A and u2(s
∗� a∗�π1) >maxa 
=a∗ u2(s

∗� a�π1).

Of course, the receiver cannot have strict ex ante preferences over play at unreached
information sets; this condition is called “on-path strict” because it places no restrictions
on the receiver’s incentives after off-path signals. In generic signaling games, all pure-
strategy equilibria are on-path strict for the receiver, but the same is not true for mixed-
strategy equilibria.

DEFINITION 15: A strategy profile π∗ satisfies the strong compatibility criterion if, at
every signal s′, we have

π∗
2

(·|s′) ∈ Δ(BR
(
P̃
(
s′�π∗)� s′))�

It is immediate that the strong compatibility criterion implies the compatibility crite-
rion, since it places more stringent restrictions on the receiver’s behavior. It is also imme-
diate that the strong compatibility criterion implies the Intuitive Criterion.

THEOREM 3: Suppose π∗ is on-path strict for the receiver and patiently stable. Then it
satisfies the strong compatibility criterion.

The proof of this theorem appears in Appendix A.5. The main idea is that when off-
path signal s′ is equilibrium dominated in π∗ for type θD but not even weakly equilibrium
dominated for type θU, type θU will experiment “infinitely more often” with s′ than θD

does. Indeed, we can provide an upper bound on the steady-state probability that θD ever
switches away from its equilibrium signal s∗ after trying it for the first time,21 which is also
an upper bound on how often θD experiments with s′, while Lemma 4 provides a lower
bound for how often θU plays s′. We show there is a sequence of steady-state profiles
π(k) ∈Π∗(g�δk�γk) with γk → 1 and π(k) → π∗ where the ratio of the lower bound to the
upper bound goes to infinity. Applying Theorem 2 of Fudenberg, He, and Imhof (2017),
we can then prove receivers will infer that an s′-sender is “infinitely more likely” to be θU

than θD, which means receivers must assign probability 0 to θD after s′ in equilibrium π∗.

21This upper bound does not apply when π∗ is not on-path strict for the receiver. When π∗ involves the
receiver strictly mixing between several responses after s∗, some of these responses might make θD strictly
worse off than her worst payoff after s′, so there is non-vanishing probability that θD observes a large number
of these bad responses in a row and then stops playing s∗.
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REMARK 5: As noted by Fudenberg and Kreps (1988) and Sobel, Stole, and Zapater
(1990), it seems “intuitive” that learning and rational experimentation should lead re-
ceivers to assign probability 0 to types that are equilibrium dominated, so it might seem
surprising that this theorem needs the additional assumption that the equilibrium is on-
path strict for the receiver. However, in our model, senders start out initially uncertain
about the receivers’ play, and so even types for whom a signal is equilibrium dominated
might initially experiment with it. Showing that these experiments do not lead to “per-
verse” responses by the receivers requires some arguments about the relative probabilities
with which equilibrium-dominated types and non-equilibrium-dominated types play off-
path signals. When the equilibrium involves on-path receiver randomization, a nontrivial
fraction of receivers could play an action after a type’s equilibrium signal that the type
finds strictly worse than her worst payoff under an off-path signal. In this case, we do not
see how to show that the probability she ever switches away from her equilibrium signal
tends to 0 with patience, since the event of seeing a large number of these unfavorable re-
sponses in a row has probability bounded away from 0 even when the receiver population
plays exactly their equilibrium strategy. However, we do not have a counterexample to
show that the conclusion of the theorem fails without on-path strictness for the receiver.

EXAMPLE 3: In the following modified beer-quiche game, the payoffs of fighting a type
θweak who drinks beer have been substantially increased relative to Example 1, so that
Fight is now a best response to the prior belief λ after Beer.

Since the prior λ is always an admissible belief in any signaling game after any signal,
the Nash equilibrium π∗ where both types play Quiche (supported by the receiver playing
Fight after Beer) is not ruled out by the compatibility criterion, unlike in Example 1.
However, this equilibrium is ruled out by the strong compatibility criterion. To see why,
note that this pooling equilibrium is on-path strict for the receiver, because the receiver
has a strict preference for NotFight at the only on-path signal, Quiche. Moreover, π∗

does not satisfy the strong compatibility criterion, because J̃(Beer�π∗)= {θstrong} implies
the only strongly admissible belief after Beer assigns probability 1 to the sender being
θstrong. Thus, Theorem 3 implies that this equilibrium is not patiently stable.

6. DISCUSSION

Our learning model supposes that the agents have geometrically distributed lifetimes,
which is one of the reasons that the senders’ optimization problems can be solved using
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the Gittins index. If agents were to have fixed finite lifetimes, as in Fudenberg and Levine
(1993, 2006), their optimization problem would not be stationary, and the finite-horizon
analog of the Gittins index is only approximately optimal for the finite-horizon multi-
armed bandit problem (Niño-Mora (2011)). Applying the geometric-lifetime framework
to steady-state learning models for other classes of extensive-form games could prove
fruitful, especially for games where we need to compare the behavior of various players
or player types, and in studies of other sorts of dynamic decisions.

Theorem 1 provides a comparison between the dynamic behavior of two agents in a
geometric-lifetime bandit problem based on their static preferences over the prizes. As an
immediate application, consider a principal-agent setting where the agent faces a multi-
armed bandit with arms s ∈ S, where s leads a prize drawn from Zs according to some
distribution. The principal knows the agent’s per-period utility function u : ⋃s Zs → R,
but not the agent’s beliefs over the prize distributions of different arms or agent’s discount
factor. Suppose the principal observes the agent choosing arm 1 in the first period. The
principal can impose taxes and subsidies on the different prizes and arms, changing the
agent’s utility function to ũ. For what taxes and subsidies would the agent still have chosen
arm 1 in the first period, irrespective of her initial beliefs and discount factor? According
to Theorem 1, the answer is precisely those taxes and subsidies such that arm 1 is more
type-compatible with ũ than u.

Our results provide an upper bound on the set of patiently stable strategy profiles in a
signaling game. In Fudenberg and He (2017), we provided a lower bound for the same set,
as well as a sharper upper bound under additional restrictions on the priors. But, together,
these results will not give an exact characterization of patiently stable outcomes. Never-
theless, our results do show how the theory of learning in games provides a foundation
for refining the set of equilibria in signaling games.

In future work, we hope to investigate a learning model featuring temporary sender
types. Instead of the sender’s type being assigned at birth and fixed for life, at the start of
each period each sender takes an i.i.d. draw from λ to discover her type for that period.
When the players are impatient, this yields different steady states than the fixed-type
model here, as noted by Dekel, Fudenberg, and Levine (2004). This model will require
different tools to analyze, since the sender’s problem becomes a restless bandit.

APPENDIX: RELEGATED PROOFS

A.1. Proof of Proposition 1

PROPOSITION 1:
(i) �s′ is transitive.

(ii) Except when s′ is either strictly dominant for both θ′ and θ′′ or strictly dominated for
both θ′ and θ′′, θ′ �s′ θ

′′ implies θ′′ 
�s′ θ
′.

PROOF: To show (i), suppose θ′ �s′ θ
′′ and θ′′ �s′ θ

′′′. For any π2 ∈Π2 where s′ is weakly
optimal for θ′′′, it must be strictly optimal for θ′′, hence also strictly optimal for θ′. This
shows θ′ �s′ θ

′′′.
To establish (ii), partition the set of receiver strategies as Π2 =Π+

2 ∪Π0
2 ∪Π−

2 , where
the three subsets refer to receiver strategies that make s′ strictly better, indifferent, or
strictly worse than the best alternative signal for θ′′. If the set Π0

2 is nonempty, then
θ′ �s′ θ

′′ implies θ′′ 
�s′ θ
′. This is because against any π2 ∈ Π0

2 , signal s′ is strictly opti-
mal for θ′ but only weakly optimal for θ′′. At the same time, if both Π+

2 and Π−
2 are

nonempty, then Π0
2 is nonempty. This is because both π2 	→ u1(θ

′′� s′�π2(·|s′)) and π2 	→
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maxs′′ 
=s′ u1(θ
′′� s′′�π2(·|s′′)) are continuous functions, so for any π+

2 ∈ Π+
2 and π−

2 ∈ Π−
2 ,

there exists α ∈ (0�1) so that απ+
2 + (1−α)π−

2 ∈Π0
2 . If onlyΠ+

2 is nonempty and θ′ �s′ θ
′′,

then s′ is strictly dominant for both θ′ and θ′′. If only Π−
2 is nonempty, then we can have

θ′′ �s′ θ
′ only when s′ is never a weak best response for θ′ against any π2 ∈Π2. Q.E.D.

A.2. Proof of Lemma 1

LEMMA 1: For every signal s, stopping time τ, belief νs, and discount factor β, there exists
π2�s(τ� νs�β) ∈ Δ(A) so that for every θ,

Eνs

{
τ−1∑
t=0

βt · u1

(
θ� s�as(t)

)}

Eνs

{
τ−1∑
t=0

βt

} = u1

(
θ� s�π2�s(τ� νs�β)

)
�

PROOF: Step 1: Induced mixed actions.
A belief νs and a stopping time τs together define a stochastic process (At)t≥0 over

the space A ∪ {∅}, where At ∈ A corresponds to the receiver action seen in period t
if τs has not yet stopped (τs > t), and At := ∅ if τs has stopped (τs ≤ t). Enumerating
A = {a1� � � � � an}, we write pt�i := Pνs [At = ai] for 1 ≤ i ≤ n to record the probability of
seeing receiver action ai in period t andpt�0 := Pνs [At = ∅] = Pνs [τs ≤ t] for the probability
of seeing no receiver action in period t due to τs having stopped.

Given νs and τs, we define the induced mixed actions after signal s, π2�s(νs� τs�β) ∈ Δ(A),
by

π2�s(νs� τs�β)(a) :=

∞∑
t=0

βtpt�i

∞∑
t=0

βt(1 −pt�0)
for i such that a= ai�

As
∑n

i=1pt�i = 1 − pt�0 for each t ≥ 0, it is clear that π2�s(νs� τs�β) puts nonnegative
weights on actions in A that sum to 1, so π2�s(νs� τs�β) ∈ Δ(A) may indeed be viewed as
a mixture over receiver actions.

Step 2: Induced mixed actions and per-period payoff.
We now show that for any β and any stopping time τs for signal s, the normalized payoff

in the stopping problem is equal to the utility of playing s against π2�s(νs� τs�β) for one
period, that is, that

u1

(
θ� s�π2�s(νs� τs�β)

)= Eνs

{
τs−1∑
t=0

βt · u1

(
θ� s�as(t)

)}/
Eνs

{
τs−1∑
t=0

βt

}
�

To see why this is true, rewrite the denominator of the right-hand side as

Eνs

{
τs−1∑
t=0

βt

}
= Eνs

{ ∞∑
t=0

[1τs>t] ·βt
}

=
∞∑
t=0

βt · Pνs [τs > t] =
∞∑
t=0

βt(1 −pt�0)�
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and rewrite the numerator as

Eνs

{
τs−1∑
t=0

βt · u1

(
θ� s�as(t)

)}=
∞∑
t=0

βt ·
(

pt�0 · 0︸ ︷︷ ︸
get 0 if already stopped

+
n∑
i=1

pt�i · u1(θ� s�ai)︸ ︷︷ ︸
else, as(t) distributed as (pt�i)

)

=
n∑
i=1

( ∞∑
t=0

βt ·pt�i
)

· u1(θ� s�ai)�

So overall, we get, as desired:

Eνs

{
τs−1∑
t=0

βt · u1

(
θ� s�as(t)

)}/
Eνs

{
τs−1∑
t=0

βt

}
=

n∑
i=1

[ ( ∞∑
t=0

βt ·pt�i
)

∞∑
t=0

βt(1 −pt�0)

]
· u1(θ� s�ai)

= u1

(
θ� s�π2�s(νs� τs�β)

)
� Q.E.D.

A.3. Proof of Lemma 3

LEMMA 3: Let regular prior g2, types θ′� θ′′, and signal s′ be fixed. For every ε > 0, there
existsC > 0 and γ < 1 so that for any 0 ≤ δ < 1, γ ≤ γ < 1, and n≥ 1, if π1(s

′|θ′)≥ π1(s
′|θ′′)

and π1(s
′|θ′)≥ (1 − γ)nC, then

R2[π1]
(
BR

(
Pθ′�θ′′� s′

)|s′)≥ 1 − 1
n

− ε�

We invoke Theorem 2 of Fudenberg, He, and Imhof (2017), which in our setting says:

Let regular prior g2 and signal s′ be fixed. Let 0< ε�h < 1. There exists C such that whenever π1(s
′|θ′) ≥

π1(s
′|θ′′) and t ·π1(s

′|θ′)≥C , we get

ψ
π1
2

(
y2 ∈ Y2[t] : p

(
θ′′|s′; y2

)
p
(
θ′|s′; y2

) ≤ 1
1 − h · λ

(
θ′′)

λ
(
θ′) )/ψπ1

2

(
Y2[t]

)≥ 1 − ε�

where p(θ|s; y2) refers to the conditional probability that a sender of s is type θ according to the posterior
belief induced by history y2.

That is, if at age t a receiver would have observed in expectation C instances of type θ′

sending s′, then the belief of at least 1 − ε fraction of age t receivers (essentially) falls in
Pθ′�θ′′ after seeing the signal s′. The proof of Lemma 3 calculates what fraction of receivers
meets this “age requirement.”

PROOF: We will show the following stronger result:
Let regular prior g2, types θ′� θ′′, and signal s′ be fixed. For every ε > 0, there exists C >

0 so that for any 0 ≤ δ�γ < 1 and n≥ 1, if π1(s
′|θ′)≥ π1(s

′|θ′′) and π1(s
′|θ′)≥ (1 − γ)nC,

then

R2[π1]
(
BR

(
Pθ′�θ′′� s′

)|s′)≥ γ� 1
n(1−γ) � − ε�
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The lemma follows because we may pick a large enough γ < 1 so that γ� 1
n(1−γ) � > 1 − 1

n

for all n≥ 1 and γ ≥ γ.
For each 0< h < 1, define Phθ′�θ′′ := {p ∈ Δ(Θ) : p(θ′′)

p(θ′) ≤ 1
1−h · λ(θ′′)

λ(θ′) }, with the convention
that 0

0 = 0. Then it is clear that each Phθ′�θ′′ , as well as Pθ′�θ′′ itself, is a closed subset of
Δ(Θ). Also, Phθ′�θ′′ → Pθ′�θ′′ as h→ 0.

Fix action a ∈A. If, for all h̄ > 0, there exists some 0< h≤ h̄ so that a ∈ BR(Phθ′�θ′′� s′),
then a ∈ BR(Pθ′�θ′′� s′) also due to best-response correspondence having a closed graph.
This means that, for each a /∈ BR(Pθ′�θ′′� s′), there exists h̄a > 0 so that a /∈ BR(Phθ′�θ′′� s′)
whenever 0<h≤ h̄a. Let h̄ := mina/∈BR(Pθ′�θ′′ �s′) h̄a. Let ε > 0 be given and apply Theorem 2
of Fudenberg, He, and Imhof (2017) with ε and h̄ to find constant C.

When π1(s
′|θ′) ≥ π1(s

′|θ′′) and π1(s
′|θ′) ≥ (1 − γ)nC, consider an age t receiver for

t ≥ � 1
n(1−γ)�. Since t ·π1(s

′|θ′)≥ C, Theorem 2 of Fudenberg, He, and Imhof (2017) implies
there is probability at least 1 − ε this receiver’s belief about the types who send s′ falls in
Ph̄θ′�θ′′ . By construction of h̄, BR(Ph̄θ′�θ′′� s′)= BR(Pθ′�θ′′� s′), so 1 −ε of age t receivers have
a history y2 where σ2(y2)(s

′) ∈ BR(Pθ′�θ′′� s′).
Since agents survive between periods with probability γ, the mass of the receiver popu-

lation aged � 1
n(1−γ)� or older is (1 − γ) ·∑∞

t=� 1
n(1−γ) � γ

t = γ� 1
n(1−γ) �. This shows

R2[π1]
(
BR

(
Pθ′�θ′′� s′

)|s′)≥ γ 1
n(1−γ) · (1 − ε)≥ γ� 1

n(1−γ) � − ε�
as desired. Q.E.D.

A.4. Proof of Proposition 2

PROPOSITION 2: π∗ ∈Π∗(g�δ�γ) if and only if Rg�δ�γ
1 [π∗

2 ] = π∗
1 and Rg�δ�γ

2 [π∗
1 ] = π∗

2 .

PROOF: If : Suppose π∗ is such that R1[π∗
2 ] = π∗

1 and R2[π∗
1 ] = π∗

2 . Consider the state
ψ∗ defined as ψ∗

θ := ψ
π∗

2
θ for each θ and ψ∗

2 := ψ
π∗

1
2 . Then, by construction, σθ(ψ

π∗
2
θ ) = π∗

θ

and σ2(ψ
π∗

1
2 )= π∗

2 , so the state ψ∗ gives rise to π∗. To verify that ψ∗ is a steady state, we
can expand by the definition of ψ

π∗
2
θ ,

fθ
(
ψ
π∗

2
θ �π

∗
2

)= fθ
(

lim
T→∞

f Tθ
(
ψ̃θ�π

∗
2

)
�π∗

2

)
�

where ψ̃θ is any arbitrary initial state.
Since fθ is continuous22 at ψ

π∗
2
θ in L1 distance defined in Footnote 20,

lim
T→∞

f Tθ
(
ψ̃θ�π

∗
2

)=ψπ∗
2
θ

is a fixed point of fθ(·�π∗
2). To see this, write ψ(T)θ := f Tθ (ψ̃θ�π∗

2) for each T ≥ 1 and let ε >
0 be given. Continuity of fθ implies there is ζ > 0 so that d(fθ(ψ

π∗
2
θ �π

∗
2)� fθ(ψ

(T)
θ �π

∗
2)) <

22This is implied by Step 1 of the proof of Proposition 3 in the Supplemental Material (Fudenberg and He
(2018)), which shows fθ is continuous at all states that assign (1 − γ)γt mass to the set of length-t histories.
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ε/2 whenever d(ψ
π∗

2
θ �ψ

(T)
θ ) < ζ. So pick a large enough T so that d(ψ

π∗
2
θ �ψ

(T)
θ ) < ζ and

also d(ψ
π∗

2
θ �ψ

(T+1)
θ ) < ε/2. Then

d
(
fθ
(
ψ
π∗

2
θ �π

∗
2

)
�ψ

π∗
2
θ

)≤ d(fθ(ψπ∗
2
θ �π

∗
2

)
� fθ
(
ψ(T)θ �π

∗
2

))+ d(ψ(T+1)
θ �ψ

π∗
2
θ

)
< ε/2 + ε/2�

Since ε > 0 was arbitrary, we have shown that fθ(ψ
π∗

2
θ �π

∗
2)=ψπ∗

2
θ and a similar argument

shows f2(ψ
π∗

1
2 �π

∗
1)=ψπ∗

1
2 . This tells us ψ∗ = ((ψπ∗

2
θ )θ∈Θ�ψ

π∗
1

2 ) is a steady state.
Only if : Conversely, suppose π∗ ∈ Π∗(g�δ�γ). Then there exists a steady state ψ∗ ∈

Ψ ∗(g�δ�γ) such that π∗ = σ(ψ∗). This means fθ(ψ∗
θ�π

∗
2)=ψ∗

θ, so iterating shows

ψ
π∗

2
θ := lim

T→∞
f Tθ
(
ψ∗
θ�π

∗
2

)=ψ∗
θ�

Since R1[π∗
2 ](·|θ) := σθ(ψ

π∗
2
θ ), the above implies R1[π∗

2 ](·|θ) = σθ(ψ
∗
θ) = π∗

1(·|θ) by the
choice of ψ∗. We can similarly show R2[π∗

1 ] = π∗
2 . Q.E.D.

A.5. Proof of Theorem 3

Throughout this subsection, we will make use of the following version of Hoeffding’s
inequality.

FACT—Hoeffding’s Inequality: Suppose X1� � � � �Xn are independent random variables
on R such that ai ≤Xi ≤ bi with probability 1 for each i. Write Sn :=∑n

i=1Xi. Then,

P
[∣∣Sn −E[Sn]

∣∣≥ d]≤ 2 exp

(
− 2d2

n∑
i=1

(bi − ai)2

)
�

LEMMA A.1: In strategy profile π∗, suppose s∗ is on-path and π∗
2(a

∗|s∗)= 1, where a∗ is a
strict best response to s∗ given π∗

1 . Then there exists N ∈ R so that, for any regular prior and
any sequence of steady-state strategy profiles π(k) ∈Π∗(g�δk�γk) where γk → 1,π(k) → π∗,
there exists K ∈ N such that whenever k≥K, we have π(k)2 (a∗|s∗)≥ 1 − (1 − γk) ·N .

PROOF: Since a∗ is a strict best response after s∗ for π∗
1 , there exists ε > 0 so that a∗

will continue to be a strict best response after s∗ for any π ′
1 ∈Π1 where, for every θ ∈Θ,

|π ′
1(s

∗|θ)−π∗
1(s

∗|θ)|< 3ε.
Since π(k) → π∗, find large enough K such that k ≥ K implies, for every θ ∈ Θ,

|π(k)1 (s∗|θ)−π∗
1(s

∗|θ)|< ε.
Write eobs

n�θ for the probability that an age-n receiver has encountered type θ fewer than
1
2nλ(θ) times. We will find a number Nobs <∞ so that

∑
θ∈Θ

∞∑
n=0

eobs
n�θ ≤Nobs�

Fix some θ ∈ Θ. Write Z(θ)
t ∈ {0�1} as the indicator random variable for whether the

receiver sees a type θ in period t of his life and write Sn :=∑n

t=1Z
(θ)
t for the total number
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of type θ encountered up to age n. We have E[Sn] = nλ(θ), so we can use Hoeffding’s
inequality to bound eobs

n�θ:

eobs
n�θ ≤ P

[∣∣Sn −E[Sn]
∣∣≥ 1

2
nλ(θ)

]

≤ 2 exp

(
−

2 ·
[

1
2
nλ(θ)

]2

n

)
�

This shows eobs
n�θ tends to 0 at the same rate as exp(−n), so

∞∑
n=0

eobs
n�θ ≤

∞∑
n=0

2 exp

(
−

2 ·
[

1
2
nλ(θ)

]2

n

)
=:Nobs

θ <∞�

So we set Nobs :=∑
θ∈ΘN

obs
θ .

Next, write ebias�k
n�θ for the probability that, after observing � 1

2nλ(θ)� i.i.d. draws from
π(k)1 (·|θ), the empirical frequency of signal s∗ differs from π(k)1 (s∗|θ) by more than 2ε. So
again, write Zθ�k

t ∈ {0�1} to indicate if the tth draw resulted in signal s∗, with E[Zθ�k
t ] =

π(k)1 (s∗|θ), and put Sn�k :=∑� 1
2 nλ(θ)�
t=1 Zθ�k

t for total number of s∗ out of � 1
2nλ(θ)� draws. We

have E[Sn�k] = � 1
2nλ(θ)� ·π(k)1 (s∗|θ), but |π(k)1 (s∗|θ)−π∗

1 (s
∗|θ)|< ε whenever k≥K. That

means

ebias�k
n�θ := P

[∣∣∣∣∣ Sn�k⌊
1
2
nλ(θ)

⌋ −π∗
1

(
s∗|θ)∣∣∣∣∣≥ 2ε

]

≤ P

[∣∣∣∣∣ Sn�k⌊
1
2
nλ(θ)

⌋ −π(k)1

(
s∗|θ)∣∣∣∣∣≥ ε

]
if k≥K

= P

[∣∣Sn�k −E[Sn�k]
∣∣≥ ⌊

1
2
nλ(θ)

⌋
· ε
]

≤ 2 exp

⎛⎜⎜⎜⎝−
2 ·
(⌊

1
2
nλ(θ)

⌋
· ε
)2

⌊
1
2
nλ(θ)

⌋
⎞⎟⎟⎟⎠ by Hoeffding’s inequality.

Let Nbias
θ := ∑∞

n=1 2 exp(− 2·(� 1
2 nλ(θ)�·ε)2

� 1
2 nλ(θ)�

), with Nbias
θ < ∞ since the summand tends to

0 at the same rate as exp(−n). This argument shows that, whenever k ≥ K, we have∑∞
n=1 e

bias�k
n�θ ≤Nbias

θ . Now let Nbias :=∑
θ∈ΘN

bias
θ .

Finally, since g is regular, we appeal to Proposition 1 of Fudenberg, He, and Imhof
(2017) to see that there exists some N so that whenever the receiver has a data set of size
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n≥N on type θ’s play, his Bayesian posterior as to the probability that θ plays s∗ differs
from the empirical distribution by no more than ε. Put Nage := 2N

minθ∈Θ λ(θ)
.

Consider any steady state ψ(k) with k ≥ K. With probability no smaller than 1 −∑
θ∈Θ e

bias�k
n�θ , an age-n receiver who has seen at least 1

2nλ(θ) instances of type θ for ev-
ery θ ∈Θ will have an empirical distribution such that every type’s probability of playing
s∗ differs from π∗

1(s
∗|θ) by less than 2ε. If, furthermore, n≥Nage, then in fact 1

2nλ(θ)≥N
for each θ so the same probability bound applies to the event that the receiver’s Bayesian
posterior on every type θ playing s∗ is closer than 3ε to π∗

1(s
∗|θ). By the construction of

ε, playing a∗ after s∗ is the unique best response to such a posterior.
Therefore, for k ≥ K, the probability that the sender population plays some action

other than a∗ after s∗ in ψ(k) is bounded by

Nage(1 − γk)+ (1 − γk) ·
∞∑
n=0

γnk ·
∑
θ∈Θ

(
eobs
n�θ + ebias�k

n�θ

)
�

To explain this expression, receivers aged Nage or younger account for no more than
Nage(1 − γk) of the population. Among the age n receivers, no more than

∑
θ∈Θ e

obs
n�θ frac-

tion has a sample size smaller than 1
2nλ(θ) for any type θ, while

∑
θ∈Θ e

bias�k
n�θ is an upper

bound on the probability (conditional on having a large enough sample) of having a bi-
ased enough sample so that some type’s empirical frequency of playing s∗ differs by more
than 2ε from π∗

1(s
∗|θ).

But since γk ∈ [0�1),

∞∑
n=0

γnk ·
∑
θ∈Θ
eobs
n�θ <

∞∑
n=0

∑
θ∈Θ
eobs
n�θ ≤Nobs

and
∞∑
n=0

γnk ·
∑
θ∈Θ
ebias�k
n�θ <

∞∑
n=0

∑
θ∈Θ
ebias�k
n�θ ≤Nbias�

We conclude that whenever k≥K,

π(k)2

(
a∗|s∗)≥ 1 − (1 − γk) · (Nage +Nobs +Nbias

)
�

Finally, observe that none of Nage�Nobs�Nbias depends on the sequence π(k), so N is
chosen independent of the sequence π(k). Q.E.D.

LEMMA A.2: Assume g is regular. Suppose there is some a∗ ∈ A and v ∈ R so that
u1(θ� s

∗� a∗) > v. Then, there exist C1 ∈ (0�1), C2 > 0 so that in every sender history yθ,
#(s∗� a∗|yθ)≥ C1 · #(s∗|yθ)+C2 implies E[u1(θ� s

∗�π2(·|s∗))|yθ]> v.

PROOF: Write u := mina∈A u1(θ� s
∗� a). There exists q ∈ (0�1) so that

q · u1

(
θ� s∗� a∗)+ (1 − q) · u > v�

Find a small enough ε > 0 so that 0< q

1−ε < 1.
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Since g is regular, Proposition 1 of Fudenberg, He, and Imhof (2017) tells us there
exists some C0 so that the posterior mean belief of sender with history yθ is no less than

(1 − ε) · #
(
s∗� a∗|yθ

)
#
(
s∗|yθ

)+C0
�

Whenever this expression is at least q, the expected payoff to θ playing s∗ exceeds v.
That is, it suffices to have

(1 − ε) · #
(
s∗� a∗|yθ

)
#
(
s∗|yθ

)+C0
≥ q ⇐⇒ #

(
s∗� a∗|yθ

)≥ q

1 − ε#
(
s∗|yθ

)+ q

1 − ε ·C0�

Putting C1 := q

1−ε and C2 := q

1−ε ·C0 proves the lemma. Q.E.D.

LEMMA A.3: Let Zt be i.i.d. Bernoulli random variables, where E[Zt] = 1−ε. Write Sn :=∑n

t=1Zt . For 0<C1 < 1 and C2 > 0, there exist ε̄�G1�G2 > 0 such that whenever 0< ε< ε̄,

P[Sn ≥ C1n+C2 ∀n≥G1] ≥ 1 −G2ε�

PROOF: We make use of a lemma from Fudenberg and Levine (2006), which in turn
extends some inequalities from Billingsley (1995).

FL06 LEMMA A.1: Suppose {Xk} is a sequence of i.i.d. Bernoulli random variables with
E[Xk] = μ, and define, for each n, the random variable

Sn :=

∣∣∣∣∣
n∑
k=1

(Xk −μ)
∣∣∣∣∣

n
�

Then for any n� n̄ ∈ N,

P

[
max
n≤n≤n̄

Sn > ε
]

≤ 27

3
· 1
n

· μ
ε4 �

For every G1 > 0 and every 0< ε< 1,

P[Sn ≥ C1n+C2 ∀n≥G1] = 1 − P

[
(∃n≥G1)

n∑
t=1

Zt < C1n+C2

]

= 1 − P

[
(∃n≥G1)

n∑
t=1

(Xt − ε) > (1 − ε−C1)n−C2

]
�

where Xt := 1 − Zt . Let ε̄ := 1
2(1 − C1) and G1 := 2C2/ε̄. Suppose 0 < ε < ε̄. Then for

every n≥G1, (1 − ε−C1)n−C2 ≥ ε̄n−C2 ≥ 1
2 ε̄n. Hence,

P[Sn ≥ C1n+C2 ∀n≥G1] ≥ 1 − P

[
(∃n≥G1)

n∑
t=1

(Xt − ε) > 1
2
ε̄n

]
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and, by FL06 Lemma A.1, the probability on the right-hand side is at most G2ε with
G2 := 211/(3G1ε̄

4). Q.E.D.

We now prove Theorem 3.

THEOREM 3: Suppose π∗ is on-path strict for the receiver and patiently stable. Then it
satisfies the strong compatibility criterion.

PROOF: Let some a′ /∈ BR(Δ(J̃(s′�π∗))� s′) and h > 0 be given. We will show that
π∗

2(a
′|s′)≤ 3h.

Step 1: Defining the constants ξ�θJ� aθ� sθ�C1�C2�G1�G2� and N recv.
(i) For each ξ > 0, define the ξ-approximations to Δ(J̃(s′�π∗)) as the probability distri-

butions with weight no more than ξ on types outside of J̃(s′�π∗),

Δξ
(
J̃
(
s′�π∗)) := {

p ∈ Δ(Θ) : p(θ)≤ ξ ∀θ /∈ J̃(s′�π∗)}�
Because the best-response correspondence has closed graph, there exists some ξ > 0 so

that a′ /∈ BR(Δξ(J̃(s′�π∗))� s′).
(ii) Since J̃(s′�π∗) is nonempty, we can fix some θJ ∈ J̃(s′�π∗).
(iii) For each equilibrium-dominated type θ ∈Θ\ J̃(s′�π∗), identify some on-path signal

sθ so that π∗
1(sθ|θ) > 0. By assumption of on-path strictness for the receiver, there is some

aθ ∈A so that π∗
2(aθ|sθ)= 1, and furthermore, aθ is the strict best response to sθ in π∗. By

the definition of equilibrium dominance,

u1(θ� sθ� aθ) >max
a∈A

u1

(
θ� s′� a

)=: vθ�

By applying Lemma A.2 to each θ ∈Θ \ J̃(s′�π∗), we obtain some C1 ∈ (0�1), C2 > 0 so
for every θ ∈Θ \ J̃(s′�π∗) and in every sender history yθ, #(sθ� aθ|yθ)≥ C1 · #(sθ|yθ)+C2

implies E[u1(θ� sθ�π2(·|sθ))|yθ]> vθ.
(iv) By Lemma A.3, find ε̄�G1�G2 > 0 such that if E[Zt] = 1 −ε are i.i.d. Bernoulli and

Sn :=∑n

t=1Zt , then whenever 0< ε< ε̄,

P[Sn ≥ C1n+C2 ∀n≥G1] ≥ 1 −G2ε�

(v) Because at π∗, aθ is a strict best response to sθ for every θ ∈ Θ \ J̃(s′�π∗), from
Lemma A.1 we may find a N recv so that for each sequence π(k) ∈ Π∗(g�δk�γk) where
γk → 1,π(k) → π∗, there corresponds Krecv ∈ N so that k ≥ Krecv implies π(k)2 (aθ|sθ) ≥
1 − (1 − γk) ·N recv for every θ ∈Θ \ J̃(s′�π∗).

Step 2: Two conditions to ensure that all but 3h receivers believe in Δξ(J̃(s′�π∗)).
Consider some steady state ψ ∈Ψ ∗(g�δ�γ) for g regular, δ�γ ∈ [0�1).
In Theorem 2 of Fudenberg, He, and Imhof (2017), put c = 2

ξ
· maxθ∈Θ λ(θ)

λ(θJ)
and δ = 1

2 .
We conclude that there exists some N rare (not dependent on ψ) such that whenever
π1(s

′|θJ)≥ c ·π1(s
′|θD) for every equilibrium-dominated type θD /∈ J̃(s′�π∗) and

n ·π1

(
s′|θJ)≥N rare� (7)

then an age-n receiver in steady state ψ where π = σ(ψ) has probability at least 1 − h of
holding a posterior belief g2(·|y2) such that θJ is at least 1

2c times as likely to play s′ as θD
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is for every θD /∈ J̃(s′�π∗). Thus, history y2 generates a posterior belief after s′, p(·|s′; y2)
such that

p
(
θD|s′; y2

)
p
(
θJ|s′; y2

) ≤ λ
(
θD
)

λ
(
θJ
) · ξ · λ

(
θJ
)

max
θ∈Θ

λ(θ)
≤ ξ�

In particular, p(·|s′; y2) must assign weight no greater than ξ to each type not in
J̃(s′�π∗); therefore, the belief belongs to Δξ(J̃(s′�π∗)). By construction of ξ, a′ is then
not a best response to s′ after history y2.

A receiver whose age n satisfies Equation (7) plays a′ with probability less than h, pro-
vided π1(s

′|θJ) ≥ c · π1(s
′|θD) for every θD /∈ J̃(s′�π∗). However, to bound the overall

probability of a′ in the entire receiver population in steady state ψ, we ensure that Equa-
tion (7) is satisfied for all except 2h fraction of receivers in ψ. We claim that when γ is
large enough, a sufficient condition is for π = σ(ψ) to satisfy π1(s

′|θJ) ≥ (1 − γ)N∗ for
some N∗ ≥N rare/h. This is because under this condition, any agent aged n≥ h

1−γ satisfies

Equation (7), while the fraction of receivers younger than h
1−γ is 1 − (γ

h
1−γ ) ≤ 2h for γ

near enough to 1.
To summarize, in Step 2 we have found a constant N rare and shown that if γ is near

enough to 1, then π = σ(ψ) has π2(a
′|s′)≤ 3h if the following two conditions are satisfied:

(C1) π1(s
′|θJ)≥ c ·π1(s

′|θD) for every equilibrium-dominated type θD /∈ J̃(s′�π∗);
(C2) π1(s

′|θJ)≥ (1 − γ)N∗ for some N∗ ≥N rare/h.
In the following step, we show there is a sequence of steady states ψ(k) ∈Ψ ∗(g�δk�γk)

with δk → 1, γk → 1, and σ(ψ(k)) = π(k) → π∗ such that, in every π(k), the above two
conditions are satisfied. Using the fact that γk → 1, we conclude that, for large enough
k, we get π(k)2 (a′|s′) ≤ 3h, which in turn shows π∗(a′|s′) ≤ 3h due to the convergence
π(k) → π∗.

Step 3: Extracting a suitable subsequence of steady states.
In the statement of Lemma 4, put θ′ := θJ . We obtain some number ε and functions

δ̄(N), γ̄(N�δ). Put N ratio := 2
ξ
G2 ·N recv maxθ∈Θ λ(θ)

λ(θJ)
and N∗ := max(N ratio�N rare/h).

Since π∗ is patiently stable, it can be written as the limit of some strategy profiles
π∗ = limk→∞π(k), where each π(k) is δk-stable with δk → 1. By the definition of δ-stable,
each π(k) is the limit π(k) = limj→∞π(k�j) with π(k�j) ∈Π∗(g�δk�γk�j) with limj→∞ γk�j = 1.
It is without loss to assume that for every k≥ 1, δk ≥ δ̄(N∗), and that the L1 distance be-
tween π(k) and π∗ is less than ε/2. Now, for each k, find a large enough index j(k) so that
(i) γk�j(k) ≥ γ(N∗� δk), (ii) L1 distance between π(k�j) and π(k) is less than min( ε2 �

1
k
), and

(iii) limk→∞ γk�j(k) = 1. This generates a sequence of k-indexed steady states, ψ(k�j(k)) ∈
Ψ ∗(g�δk�γk�j(k)). We will henceforth drop the dependence through the function j(k)
and just refer to ψ(k) and γk. The sequence ψ(k) ∈ Ψ ∗(g�δk�γk) satisfies: (1) δk → 1�
γk → 1; (2) δk ≥ δ̄(N∗) for each k; (3) γk ≥ γ̄(N∗� δk) for each k; (4) π(k) → π∗; (5) the
L1 distance between ψ̄(k) and π∗ is no larger than ε. Lemma 4 implies that, for every
k, π(k)1 (s′|θJ)≥ (1 − γk)N∗. So, every member of the sequence thus constructed satisfies
condition (C2).

Step 4: An upper bound on experimentation probability of equilibrium-dominated
types.

It remains to show that eventually condition (C1) is also satisfied in the sequence
constructed in Step 3. We first bound the rate at which the aggregate receiver strategy
π(k)2 converges to π∗

2 . By Lemma A.1, there exists some Krecv so that k ≥ Krecv implies
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π(k)2 (aθ|sθ)≥ 1 − (1 −γk) ·N recv for every θ ∈Θ \ J̃(s′�π∗). Find next a large enoughKerror

so that k≥Kerror implies (1 − γk) ·N recv < ε̄ (where ε̄ was defined in Step 1).
We claim that when k≥ max(Krecv�Kerror), a type θ /∈ J̃(s′�π∗) sender who always sends

signal sθ against a receiver population that plays π(k)2 (·|sθ) has less than (1−γk) ·N recv ·G2

chance of ever having a posterior belief that the expected payoff to sθ is no greater than
vθ in some period n≥G1. This is because by Lemma A.3,

P[Sn ≥ C1n+C2 ∀n≥G1] ≥ 1 −G2 ·π(k)2

({a 
= aθ}|sθ
)≥ 1 −G2 · (1 − γk) ·N recv�

where Sn refers to the number of times that the receiver population responded to sθ with
aθ in the first n times that sθ was sent. But Lemma A.2 guarantees that, provided Sn ≥
C1n+ C2, sender’s expected payoff for sθ is strictly above vθ, so we have established the
claim.

Finally, find a large enough KGittins so that k ≥ KGittins implies the effective discount
factor δkγk is so near 1 that, for every θ /∈ J̃(s′�π∗), the Gittins index for signal sθ cannot
fall below vθ if sθ has been used no more thanG1 times. (This is possible since the prior is
non-doctrinaire.) Then for k≥ max(Krecv�Kerror�KGittins), there is less than G2 · (1 − γk) ·
N recv chance that the equilibrium-dominated sender θ /∈ J̃(s′�π∗) will play s′ even once. To
see this, we observe that according to the prior, the Gittins index for sθ is higher than that
of s′, whose index is no higher than its highest possible payoff vθ. This means the sender
will not play s′ until her Gittins index for sθ has fallen below vθ. Since k≥Krecv, this will not
happen before the sender has played sθ at leastG1 times, and since k≥ max(Kerror�Krecv),
the previous claim establishes that the probability of the expected payoff to sθ (and, a
fortiori, the Gittins index for sθ) ever falling below vθ sometime after playing sθ for the
G1th time is no larger than G2 · (1 − γk) ·N recv.

This shows that, for k ≥ max(Krecv�Kerror�KGittins), π(k)1 (s′|θ) ≤ G2N
recv · (1 − γk)

for every θ /∈ J̃(s′�π∗). But since π(k)1 (s′|θJ) ≥ N∗ · (1 − γk) where N∗ ≥ N ratio =
2
ξ
G2 · N recv maxθ∈Θ λ(θ)

λ(θJ)
, we see that condition (C1) is satisfied whenever k ≥

max(Krecv�Kerror�KGittins). Q.E.D.
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