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Abstract

We consider an information design problem in which a sender tries to persuade a re-

ceiver that has "correlation neglect", i.e., fails to understand that signals might be correlated.

We show that the sender can change the expected posterior of the receiver in any direction.

When the number of signals the sender can send is large, she can approach her first best

utility. We characterize for which environments full correlation is the optimal solution; in

these cases we can use a modified problem and standard concavification techniques. We

show that full correlation is optimal in the familiar case of binary utilities but also more

generally when utilities are super-modular and when the number of signals is large. How-

ever, in some environments full correlation is not optimal and in those cases the optimal

solution involves negative correlation.
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1 Introduction

In this day and age we are constantly exposed to many different information sources. For

example, as voters we are exposed to news from different media sources offline as well as

online and through social media. To top that, day to day interactions with family, friends

and colleagues at work expose us to even more information. We probably understand each

information source separately better than we understand the complex ways in which these

sources are inter-related.

The growth in the amount of information we are exposed to and its complexity, opens

up opportunities for those that try to manipulate the beliefs of voters or consumers. In

the last two years, more and more instances of orchestrated attempts to feed information

into social media are exposed. To give one example, in the aftermath of the Brexit vote

in the UK in June 2016, a key concern is a possible breach of electoral laws on behalf of

the pro-Brexit side in terms of its use of individual data; specifically the UK Information

Commissioner’s Office (ICO) has started investigating the relationship between the Cana-

dian data firm AggregateIQ, Vote Leave and a number of other leave campaigns in using

the same data handed over by Facebook in May 2018. The ICO’s initial report says: “AIQ

created and, in some cases, placed advertisements on behalf of the DUP Vote to Leave cam-

paign, Vote Leave, BeLeave, and Veterans for Britain. AIQ ran 218 ads solely on behalf

of Vote Leave and directed at email addresses on Facebook. Vote Leave and BeLeave used

the same data set to identify audiences and select targeting criteria for ads[. . . ] Our reg-

ulatory concern is therefore whether, and on what basis, the two groups have shared data

between themselves and others.” While the ICO is only able to investigate breaches of data

protection law, the Electoral Commission in the UK is separately investigating allegations

of unlawful coordination between Vote Leave (the official pro-Brexit campaign during the

EU referendum) and BeLeave.

In this paper we investigate how coordination across information sources -when un-

known to voters and consumers- can be used strategically to affects their beliefs. While,

as described above, campaigns and information sources may be correlated, voters may be

unaware that this is the case. Indeed a recent empirical literature documents in different

environments how people exhibit “correlation neglect” and how this can lead to extremism.

Formally, correlation neglect means that individuals assume that information sources are

(conditionally) independent.1 Ortoleva and Snowberg (2015) documents how correlation

neglect shapes political views, Eyster and Weizsäker (2011), Kallir and Sonsino (2009) and

Enke and Zimmermann (2018) provides experimental evidence for such behaviours.2

Given this widespread inability to understand correlation, those that control several in-

formation sources may find ways to manipulate voters or consumers beliefs: Media owners

can correlate the messages they wish to send across their different news outlets, campaign

1De Marzo et al. (2003), Golub and Jackson (2012) and Gagnon-Bartsch and Rabin (2015) study how corre-
lation neglect affects the diffusion of information in social networks. Glaeser and Sunstein (2009) and Levy and
Razin (2015a;b) explore the implications for group decision making in political applications.

2On the theory side, Ellis and Piccione (2017) provide an axiomatic characterization of individuals that cannot
account for correlation. Levy and Razin (2018) discuss environments for which correlation neglect is more likely.
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and thinktank managers can coordinate advertisements in a manner that is hard to detect

even for savvy regulators, and editors of news aggregation sites can carefully pick the links

they present. Even those who do not have such immediate access to multiple news outlets

can still take advantage of individuals neglecting correlation. As Cagé et al. (2017) show,

most online content is not original and is quickly repackaged and repeated.

To be sure, offline communication can yield similar situations. A lobbyist who may

wish to influence a committee may coordinate a campaign in which individual members

are targeted with different reports from a variety of thinktanks or scientific institutions.

Committee members that exchange information among themselves may be unaware that

the sources of their information were coordinated. For example, they may not be aware

that the same donor gives money to all these different thinktanks. Thus, more generally

strategic senders may be in a position to manipulate the correlation neglect of receivers.3

We analyze a model of persuasion when the receiver has correlation neglect. We use

an information design model in which a sender, who cares about the action of the receiver

as well as about the state of the world, can design (and commit to) a joint information

structure for m experiments or signals, as a function of the state of the world. A receiver

who attempts to learn the state of the world will observe the realizations of these m signals.

We assume that the receiver understands the marginal distribution of each signal, so that

she can interpret each of them separately. But, we also assume that she believes that the

signals are all conditionally independent. Given her updated beliefs, she takes her optimal

action. We then analyze the scope for manipulation of the receiver’s beliefs/actions.

We show that the sender can manipulate the receiver’s posteriors. Specifically, the

sender can move the expected posterior of the receiver away from the prior. This is intuitive

as the receiver’s beliefs do not satisfy the martingale property when the sender correlates

signals. What we show is that the sender can move these beliefs in any direction she wishes

to, and that to do so, it is sufficient to use just two signals. Moreover, we construct this type

of manipulation by fully correlating these two signals.

This ability of the sender to manipulate the receiver is, however, bounded. Whenever

the receiver has only a finite number of signals there are strict bounds on how the sender

can manipulate her posterior beliefs. This bound arises as the receiver is Bayesian when it

comes to interpreting each signal separately. This imposes some limits on the ability of the

sender to manipulate her beliefs.

When the number of signals grows large, the above constraints on manipulation are

relaxed. We show that in the limit, the sender can manipulate the receiver in the most

extreme way possible. In particular, the sender can induce any posterior beliefs that she

wishes to, where these induced posteriors may differ across states. Thus, the sender can

fully manipulate the receiver and achieve her first best utility.

Correlating signals or posteriors presents additional constraints on the problems con-

3One might recall the story of Solomon’s Succession of King David as described in the Bible, 1 Kings 1. In
the story, Nathan the Prophet and Bathsheva, King David’s wife, want to make sure King David follows up on his
promise to anoint Solomon as King. Nathan comes up with a plan by which Bathsheva will speak to King David
about the matter, and “Then while you are still there speaking with the king, I will come in after you and confirm
your words." The plan succeeds and King David anoints Solomon as king of Israel and Judah.
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sidered for example in Aumann and Maschler (1995) and Kamenica and Gentzkow (2011).

Specifically, standard concavification techniques will indeed imply an upper bound on what

the sender can gain, but this upper bound is not necessarily achieved: Concavification may

imply correlation patterns that cannot be obtained. For example, one cannot negatively cor-

relate two fully informative signals. However, if the optimal concavification solution can

be achieved with full positive correlation across signals, then it is always feasible.

Motivated by the above, we present and analyze a modified problem. In the modified

problem we redefine the utility of the sender to depend on one signal whose realisation

is fully correlated (repeated) m times. Specifically, if the optimal solution to the general

problem is full correlation, then the problem is isomorphic to the modified problem in

which a sender designs just one signal whose realisation the receiver observes m times.We

can then use a simple modified concavification argument to design just such one signal.

We show that for the case of state-independent utilities, the solution to the modified

problem converges to the optimal solution when m is large. Even if m is small, this pro-

cedure will characterize the optimal solution in a large family of utilities that includes the

family of supermodular utilities but also the simple canonical binary example that we an-

alyze in Section 4.1. In other words, the sender should use full correlation as her optimal

information structure in these cases.

However, full correlation is not always optimal. For example, consider the case in which

it is optimal to induce a posterior which is degenerate on one state. In this case it is wasteful

to fully correlate signals, each inducing with some probability this degenerate posterior.

Alternatively, by negatively correlating this degenerate posterior with interior ones, the

receiver will still have a degenerate posterior when factoring in both signals while being

able to use the interior posteriors in her benefit. More generally we show that submodularity

will imply some negative correlation.

Our paper relates to the growing literature on persuasion, stemming from Aumann and

Maschler (1995) and Kamenica and Gentzkow (2011). In Kamenica and Gentzkow (2011),

it is sufficient to use one signal when facing a rational receiver. To construct a meaning-

ful model of correlation neglect, we have to use more than one signal. We show that in

some environments our problem can be translated to a standard persuasion problem with

a modified utility function, and then the same concavification techniques can be applied.

In some cases however, concavification that imposes Bayesian plausibility constraint on

each signal is not sufficient to identify the solution. Alonso and Câmara (2016b) also an-

alyze persuasion under behavioural assumptions, specifically that of a wrong prior for the

receiver. Koessler et al. (2018) and Arieli and Babichenko (2016) analyze a multiple (ra-

tional) receiver persuasion problem. Our problem can be interpreted as a sender sending

private or public messages to m receivers who share the information among themselves and

believe that their information sources are independent. Meyer (2017) considers a general

model which can be applied to an information design problem with many receivers. In her

model the sender chooses a joint distribution to maximize an expected value function sub-

ject to fixed marginals distributions. For the case of binary states, she shows that when the

value function is symmetric, the maximized value decreases as the marginals become more
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heterogeneous. Finally, in Levy et al. (2018), we consider a similar model that is applied

to media markets where we consider a binary state space, binary signals, and competition

among senders.

Our analysis relates more generally to the literature on misperceived or misspecified

models. In some sense misperception arises endogenously in our model. While we assume

that the receiver always interprets different signals as conditionally independent, this is

a misspecified model only if the sender chooses to correlate her signals. Indeed, as we

show, the optimal solution involves a joint information structure with correlation and so the

receiver’s model is misperceived. In other recent contributions, Eliaz and Spiegler (2018),

Schumacher and Thysen (2018), and Ellis et al. (2018) characterize how individuals with

misperceived model can be strategically manipulated.

The remainder of the paper is as follows. In Section 2 we construct the model and define

the sender’s problem. In Section 3 we present our general results about belief manipulation,

and show how the sender can achieve her first best utility in the limit. Section 4 provides the

results on the design of the optimal information structure; specifically, we analyze first the

case of binary utilities to illustrate our main results and we present the modified problem

where the optimal information structure exhibits full (positive) correlation. In Section 5

we consider extensions that restrict the ability of the sender to freely manipulate, where

we allow the receiver to understand some correlation and also consider the case of limited

attention. The Appendix includes all proofs.

2 The Model and Preliminary Results

There is a finite state spaceΩ = {ω1, ..., ωn}with a full support prior probability distribution

p ∈ ∆(Ω) which is common knowledge. The sender designs an information structure that

consists of m distinct signals. The receiver observes the signal realisations s = (s1, ..., sm)

and chooses an action a out of a compact set A ⊂ R. Given action a and state ω, the receiver

gets utility u(a, ω) and the sender gets v(a, ω).

Information Structures:
An information structure with m distinct signals or experiments is defined by {S, {q(· |
ω)}ω∈Ω} where S =

∏m
i=1 S i is the cartesian product of the support of the individual signals,

and q(· | ω) ∈ ∆(S) is the joint probability distribution conditional on ω ∈ Ω. For such

information structure, let {S i, {qi(· | ω)}ω∈Ω} denote the marginal information structure for

signal i derived from {S, {q(· | ω)}ω∈Ω}.4 We assume S i is finite for all i ∈ {1, ...,m}.5

As in the Bayesian Persuasion literature it will be more convenient to work with dis-

tributions over posteriors rather than signal distributions. Given a realization si of signal i,

define the posterior induced by si to be,

µsi(ω) =
p(ω)qi(si | ω)∑
υ p(υ)qi(si | υ)

for all ω ∈ Ω.

4The marginal conditional distributions are given by qi(si | ω) =
∑

s−i∈S −i
q(si, s−i | ω) for all si ∈ S i and ω ∈ Ω.

5See Koessler et al. (2018) for a model with competing senders using infinite message sets.
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The joint distribution of the signals {q(· | ω)}ω∈Ω induces a collection of conditional

distributions, {τ(· | ω)}ω∈Ω ⊂ ∆(∆(Ω)m), over vectors of posteriors, such that

τ((µs1 , ..., µsm) | ω) = q((s1, ..., sm) | ω) for all ω ∈ Ω.

Kamenica and Gentzkow (2011) characterize the set of unconditional distributions over

posteriors that can be induced by a signal structure, along with a Bayesian updater. Such a

set corresponds to the distributions that satisfy Bayesian plausibility, i.e., such that the ex-

pected posterior coincides with the prior distribution. As the sender might want to correlate

signals depending on the realisation of the state, it will be important for us to characterize

the set of conditional distributions over posteriors that can be generated by a signal with

a Bayesian updater. In particular, some correlation structures might not be feasible even

though they generate unconditional distributions that satisfy Bayes plausibility. A simple

example is provided below.

Example 1. Consider Ω = {0, 1} and p(0) = p(1) = 1
2 and denote by µ1 the degenerate

posterior on ω = 1 and µ0 the degenerate posterior on ω = 0. Consider two fully revealing

signals. Each signal generates posteriors µ1 and µ0 with probability 1
2 which is Bayes-

plausible, however, it is not possible to negatively correlate them because conditional on

the realization of the state only one of the two posteriors can be induced.

Given the joint conditional distributions {τ(· | ω)}ω∈Ω we denote by {τi(· | ω)}ω∈Ω ⊂
∆(∆(Ω)) the marginal conditional distributions over posteriors corresponding to the i’th

signal and τi(·) =
∑
ω∈Ω p(ω)τi(· | ω) ∈ ∆(∆(Ω)) the corresponding marginal unconditional

distribution. The following lemma characterises the families of joint conditional distribu-

tions that can be induced by m signals:

Lemma 1. The joint conditional distributions {τ(· | ω)}ω∈Ω are inducible by m signals,

given a Bayesian updater, if and only if for any µ ∈ ∆(Ω) and any i ∈ {1, ...,m},

τi(µ | ω) =
τi(µ)µ(ω)

p(ω)
for all ω ∈ Ω (1)

Note that if {τi(· | ω)}ω∈Ω satisfies condition (1), then the unconditional distribution τi(·)
satisfies Bayesian plausibility, but the reverse is not true.6

In the rest of the paper we abstract from explicit signal structures and work with its

corresponding conditional distributions over posteriors.

Correlation Neglect Assumption:
We assume that the receiver observes the marginal information structure for every signal

6To see this, suppose that {τi(· | ω)}ω∈Ω satisfies condition (1) then,∑
µ

τi(µ)µ(ω) =
∑
µ

p(ω)τi(µ | ω) = p(ω)
∑
µ

τi(µ | ω) = p(ω).

However, consider the following conditional distributions in the setting of Example 1: τ(µ1 | ω = 0) = 1 = τ(µ0 |
ω = 1). These conditional distributions do not satisfy condition (1) even though the unconditional distribution
τ(µ1) = τ(µ0) = 1

2 is Bayes-plausible.
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i, but she believes that the signals are conditionally independent. The receiver therefore

correctly interprets each signal in isolation but ignores the potential correlation between

the signals. In Section 5.2 we extend the model and our results to consider a receiver who

can understand some degree of correlation.

We now describe how a receiver with correlation neglect updates her beliefs in term

of posterior distributions. Given m signals with conditional distributions {τi(· | ω)}ω∈Ω
for i = 1, ...,m, and a vector of posteriors µ = (µ1, ..., µi, ..., µm) where µi is the posterior

generated by signal i, we denote by µCN(µ) the posterior that a receiver with correlation

neglect forms. The following lemma characterises µCN(µ).7

Lemma 2. Given a prior p and a vector of posteriors µ = (µ1, ..., µm), the posterior belief

of a receiver with correlation neglect is:

µCN(ω | µ) =

∏m
i=1 µi(ω)

p(ω)m−1∑
υ∈Ω

∏m
i=1 µi(υ)

p(υ)m−1

Note that if the sender sends only one signal, m = 1, then µCN(µ) = µ. In such case, the

receiver acts as a rational agent.

Once the receiver updates her beliefs, she chooses the optimal action given those beliefs.

Given a posterior µ ∈ ∆(Ω), we denote by aµ the receiver’s optimal choice:

aµ ∈ arg max
a∈A

∑
ω∈Ω
µ(ω)u(a, ω).

In case of multiple solutions we will assume the receiver chooses the sender-preferred so-

lution in order to guarantee existence of the sender’s solution.

It will be useful for comparisons to define the First Best benchmark for the sender. For

any ω ∈ Ω, define by µFB
ω = arg maxµ v(aµ, ω). This is the posterior that would generate the

optimal action for the sender at state ω.

The Sender’s Problem:
Given a joint information structure τ, with conditional distributions {τ(· | ω)}ω∈Ω, we denote

by v̂(τ) the expected utility for the sender:

v̂(τ) =
∑
ω∈Ω

p(ω)
∑
µ∈∆(Ω)m

τ(µ | ω)v(aµCN (µ), ω)

7This result exists in Sobel (2014), Proposition 5. The multiplicative form also arises in axiomatic approaches
to combining forecasts, see Morris (1977) and Bordley (1982).
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The sender’s problem is to choose {τ(· | ω)}ω∈Ω ⊂ ∆(∆(Ω)m) to solve:

maxτ v̂(τ)

s.t. µCN(ω | µ) =

m∏
i=1
µi(ω)

p(ω)m−1

∑
υ∈Ω

m∏
i=1
µi(υ)

p(υ)m−1

and µi(ω) = p(ω)τi(µi |ω)
τi(µi)

∀µi s.t. τi(µi) > 0, ∀i ∈ {1, ...,m}

The first constraint corresponds to the updating of the receiver with correlation neglect

and the second constraint requires all the marginal conditional distributions to be inducible

by a signal structure.

Existence of a solution is guaranteed by the selection of the sender-preferred action.

This implies that v̂(τ) is upper semicontinuous and combined with the compactness of the

set of all joint distributions this implies the existence of a maximum.

Remark 1. Note that the expected utility of the sender, v̂(τ), cannot be written as a function

of her belief only, or the receiver’s beliefs only. Given some joint information structure that

does not satisfy independence across the different signals, the sender’s and the receiver’s

beliefs do not coincide, and in general there is no fixed mapping from the sender’s beliefs

to that of the receiver that does not depend on the specific signal structure used. Hence

standard concavification arguments will in general not be applicable.8

If the receiver was rational, the sender would have no interest in increasing the number

of signals she has at her disposal: as Kamenica and Gentzkow (2011) show, any posterior

distribution that can be generated with multiple signals could also be generated with only

one signal. Therefore the case of m = 1 corresponds to the case of a rational receiver. In

contrast, when the receiver has correlation neglect, adding more signals does increase the

set of distributions over posteriors that can be generated.

Before turning to the next section we introduce a preliminary result that simplifies the

analysis of the paper. It states that we can, without loss of generality, focus on signal

structures that use homogeneous signals, i.e., signals with the same marginal distributions.

Lemma 3. For any joint information structure τ, and its associated expected utility for the

sender v̂(τ), there exists a joint information structure τ′ with homogenous marginals, i.e.,

τ′i = τ
′
j, for all i, j ∈ {1, ..m}, such that v̂(τ′) = v̂(τ).

The result relies on the fact that the receiver’s updating rule µCN(·) is symmetric in

(µ1, ..., µm) and hence the induced utility of the sender, v(aµCN (µ), ω), is also symmetric

in the different m individual posteriors she generates. Hence, any expected utility v̂(τ)

for some τ can be replicated by permutating the marginal distributions of the m signals.

8This differs from the analysis of a behavioural receiver in Alonso and Câmara (2016a), in which even though
the sender and the receiver have different priors there is a bijection between the sender’s and the receiver’s poste-
riors.
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Considering a joint information structure which is an average of all possible permutations

will achieve this utility and will have homogeneous marginal signals. Henceforth we will

focus on homogeneous signals.

3 The Scope for Manipulation

This section presents some general results on the scope of manipulation given correlation

neglect. The first main result shows that by using just two signals and fully correlating

them, the sender is able to move the expected posterior of the receiver in any direction she

might want.

Proposition 1. For any distribution q ∈ ∆(Ω), there exists ϵ > 0 and a signal structure τ

with two fully correlated signals, such that:

Eτ(µCN(µ)) = (1 − ϵ)p + ϵq

While the fact that the expected posterior does not equal the prior is not surprising given

the receiver’s wrong beliefs, what we show in the proof is that the expected posterior can

be moved in any direction away from p.

To provide the intuition behind the proof let us consider the case of binary states. Fig-

ure 1 illustrates how a receiver with correlation neglect forms her posterior after receiving

a particular signal realization twice. The horizontal axis corresponds to the posterior (prob-

ability that the state is one) when a single signal is sent. The vertical axis corresponds to

the correlation neglect posterior given that two identical realizations have been received.

1

µCN

0 1
µ

p

p

µ

µCN

Figure 1: Correlation neglect posterior after 2 fully correlated signals.

There are two characteristics of the receiver’s updating rule that are worth highlighting.

First there is an amplification effect: a receiver that gets the same realization twice and

thinks they are independent will have a higher posterior if the individual posterior was

above the prior, and a lower posterior if the individual posterior was below the prior. Second

the updating is convex below the prior and concave above it. In other words, the marginal

value of information is decreasing in the sense that after the first piece of good (bad) news,

the second piece of good (bad) news moves the posterior by a lower increment. The sender

will be able to exploit this non-linearity of the updating rule to move the expected posterior
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in any desired direction. For instance suppose that the sender wants to induce an expected

posterior that is above the prior. Consider a signal that with high probability induces a

posterior slightly above the prior and with small probability induces a posterior below and

further away from the prior (see Figure 2a). By repeating this signal twice the sender will

be inducing more extreme posteriors with exactly the same probabilities as before. Given

the concavity and convexity of the updating rule, this will lead to a higher expected signal.

A symmetric argument could be used to generate a expected posterior below the prior (see

Figure 2b).

1

0 1
µ

µCN

p

E[µCN]
p

µµ′

(a) Expected posterior is above the prior

1

0 1
µ

µCN

p

E[µCN]
p

µ µ′

(b) Expected posterior is below the prior

Figure 2: Changing the expected posterior

The proof of Proposition 1 generalizes this intuition to finite state spaces.

Our second result shows that the scope of manipulation is bounded, i.e., the sender will

not be able to induce a posterior that is far from the prior with probability approaching to

one. Define by Mω(δ) the set of vectors of posteriors in the support of τ that lead to the

receiver holding a belief that puts weight strictly higher than 1 − δ in state ω:

Mω(δ) = {µ ∈ Support(τ) | µCN(ω | µ) > 1 − δ}

Proposition 2 bounds the probability that τ allocates to Mω(δ).

Proposition 2. For any ω, υ ∈ Ω with ω , υ, and δ > 0,

τ(Mω(δ) | υ) ≤ m
1

p(υ)

(
δ

1 − δ

) 1
m
(

p(υ)
p(ω)

)m−1
m

In particular,

lim
δ→0
τ(Mω(δ)) ≤ p(ω)

The bound on manipulation comes from the fact that the receiver understands individual

signals and hence the marginal distributions constrain the sender on her ability to persuade.

For example, the sender will not be able to convince the receiver that a particular state has

been realized when it has not.

Note that for any fixed δ > 0, the bound on manipulation becomes more and more

lenient as the number of signals increases. In fact, as the next result shows, in the limit

when the number of signals increases the sender can induce the receiver to have any state-

dependent posterior she might wished to.
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Theorem 1. When v(a, ω) is continuous, the sender can achieve her first best in the limit.

That is, given {qω}ω∈Ω ⊂ ∆(Ω), there exists a sequence of signal structures {Sm}m∈N indexed

by the number of signals, such that for any ω ∈ Ω, and any ϵ > 0,

lim
m→∞

τS
m
({µ ∈ Support(τ) | |µCN(µ) − qω| < ϵ} | ω) = 1

Theorem 1 states that the sender can approach her first-best, µFB
ω , at any state ω and

thus manipulation is complete in the limit. The proof of Theorem 1 is constructive. The

information structure uses signals with n = |Ω| realizations. Each realisation is indicative

of a particular state, and the sender can correlate the realisations in a way that approaches

µFB
ω in the limit.

We have shown above the unlimited scope for persuasion in the limit when m → ∞;

in this case the sender can achieve her first-best utility, for a general state space and for

general state-dependent utilities. Away from the limit, the scope for persuasion is typically

derived by using concavification techniques, which we now discuss:

Remark 2 (Concavification and the upper bound on manipulation). As stated in Re-

mark 1, for state-dependent utilities, there is no a one-to-one relationship between the

posteriors of the sender and the receiver that is independent of the joint distribution τ and

hence the standard concavifiaction arguments are not applicable. For state-independent

preferences however, the sender’s expected payoff does not depend directly on the sender’s

posterior. Thus, given a vector of posteriors µ = (µ1, ..., µm), the induced utility for the

sender is ṽ(µ) = v(aµCN (µ)) and we can write the expected utility of the sender as

v̂(τ) =
∑
µ∈∆(Ω)m

τ(µ)ṽ(µ).

Denote by V(µ) the concavification of ṽ(·). It is easy to see then that for any information

structure τ(·),
v̂(τ) ≤ V(p)

In other words, while concavifiation produces an upper bound, this upper bound V(p) might

not be reached. Specifically, concavification may yield correlation patterns that are not

compatible with the characterisation of feasible information structures given in Lemma 1.

The remark above illustrates that concavification presents the upper bound on the sender’s

utility for the case of state-independent preferences. Note that when concavification pre-

scribes full positive correlation across signals, the upper bound will be achieved. Full cor-

relation across signals is always a feasible correlation structure. Specifically, it implies the

design of one signal, subject to only the Bayesian plausibility constraint, and then repeating

the realisation m times. We next explore the scope of manipulation when the sender uses

full correlation.
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4 The Modified Problem: Full Correlation

In this section we simplify the analysis by focusing on a modified problem that involves the

sender designing just one signal and then fully correlating it m times: that is repeating m

times each realization. We first consider the simple binary utility example to illustrate our

results. We show that for this case full correlation is optimal. Building on the binary exam-

ple, we construct the modified problem and show more generally under what environments

the solution to this problem is also the optimal solution to the general problem. Throughout

this Section we focus on state-independent utilities, given Remark 2 above.

Note that the modified problem is also interesting in its own right: There may be en-

vironments in which the sender is not able to control many information sources, but she

may be aware that signals she transmits are repeated, as shown by Cagé et al. (2017). In

that case, full correlation as defined in the modified problem is the only possible course of

action for the sender.

4.1 Binary Utilities

Consider Ω = {0, 1} with prior p = Pr(ω = 1) < 1
2 . The receiver takes one of two actions,

a = 1 if µCN(1 | µ) ≥ 1
2 and a = 0 otherwise. In particular, given the prior, the receiver’s

default action is 0. Suppose that the sender has some state-independent preferences such

that she prefers a = 1 to a = 0. This is the familiar binary utility model. Below, when we

say the posterior of the receiver we mean her belief that the state is ω = 1.

Consider first the problem with one signal, m = 1. In this case the receiver behaves as

if she is rational. Figure 3 shows the solution; on the x − axis we have the posterior of the

receiver and on the y− axis the utility of the sender as a function of the receiver’s posterior.

1

0 1
µ

p 1
2

aµ

Figure 3: Binary Utilities: 1 signal

Concavification implies that the solution involves two posteriors, µ = 1
2 and µ = 0.

Bayesian plausibility (i.e., Eτ(µ) = p) implies that 1
2τ (1/2) = p and hence τ(0) = 1 − 2p.

Using Lemma 1, we have

τ(1/2 | 1) = 1, τ(1/2 | 0) =
p

1 − p
, τ(0 | 0) =

1 − 2p
1 − p

Let us now illustrate what µCN
m (µ) looks like when m signals are repeated (fully correlated).

Figure 4 has on the x − axis the posterior µ of the receiver and on the y − axis we have
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µCN
m (µ) ≡

µm

pm−1

µm

pm−1 +
(1−µ)m

(1−p)m−1

, the belief of the receiver that the state is ω = 1 when she receives

m replications of the posterior µ. As already mentioned in the discussion of Proposition 1,

for m > 1, µCN
m (µ) is higher than µ for µ > p and and lower that µ when µ < p. Moreover,

µCN
m (·) is concave for µ > p and convex when µ < p. In other words there is a “stretching”

effect.

1

µCN
m

0 1
µ

p

µCN
1

µCN
2µCN

3µCN
10

Figure 4: Correlation neglect posterior after m fully correlated signals.

It is now easy to see that already with two, fully correlated, signals, the sender can

increase her utility. Specifically, the posterior µCN
2 (µ) = 1

2 can be induced by a twice-

repeated µ∗ = p
1
2

p
1
2 +(1−p)

1
2
< 1

2 . As a result, given the Bayesian plausibility restriction, this

posterior can be induced with a higher probability in state 0, specifically:

τ(µ∗|1) = 1, τ(µ∗|0) =
(

p
1 − p

) 1
2

, τ(0|0) = 1 −
(

p
1 − p

) 1
2

This then leads to a higher expected posterior for the receiver, as now Eτ(µCN
2 (µ)) > p.

In the left panel of Figure 5 we illustrate this result by drawing the modified utility function

for the sender. Specifically, the sender gains whenever
µ2
p

µ2
p +

(1−µ)2
(1−p)

≥ 1
2 .

1

0 1

1
2

µ

VFC
2 (p)

ṽFC
2 (µ)

µCN(2)

p µ∗ 1
2

(a) 2 signals

1

0 1

1
2

µ

VFC
m (p)

µCN
m

p 1
2

ṽFC
m (µ)

(b) m signals

Figure 5: Binary utilities

The right panel of Figure 5 illustrates that the sender can achieve a higher utility when

the number of signals increases. Specifically, we solve the following problem. The sender

has to design just one signal, that satisfies Bayes-plausibility, given her modified utility

13



0

1 0

1
0

0.5

1

µ1

µ2

Figure 6: Concavification in the Binary States-Binary Action Model. (p=0.4)

function, which implies that she receives 1 iff

µm

pm−1

µm

pm−1 +
(1−µ)m

(1−p)m−1

≥ 1
2

and 0 otherwise. Using this modified problem, we can see that in the limit, as the number

of signals go to infinity, the sender’s utility converges to her first best; she can induce a

posterior, µ = p
m−1

m

p
m−1

m +(1−p)
m−1

m
, which is larger than but arbitrarily close to p, with probability

converging to 1. Specifically, the signal she uses will have a distribution of τ(µ | 1) = 1,

τ(µ | 0) =
(

p
1−p

) 1
m and τ(0 | 0) = 1 −

(
p

1−p

) 1
m . Therefore, as m → ∞ will induce τ(µ) → 1

and the sender induces action a = 1 with probability 1.

Finally, in order to see whether using full correlation is optimal, we compute the con-

cavification of ṽ(·). The case of two signals is plotted in Figure 6. By drawing that the

concavification of ṽ(·), we can compute the upper bound on the sender’s expected utility

specified in Remark 2. Noting that each signal has to satisfy Bayesian plausibility and

hence the utility is evaluated at the prior (p, p), we see that the solution to this concavifica-

tion can be achieved by mixing between two vectors of posteriors that are in the diagonal

and hence correspond to fully correlated signals. Furthermore, as the solution of concavifi-

cation yields full correlation, and full correlation is always feasible as long as the Bayesian

plausibility constraint is satisfied, the upper bound is reached and this leads to the maximum

expected utility for the sender.

The binary utility example had illustrate our key results from Section 3; the sender can

gain more when m > 1, manipulation is bounded for any given m, but full manipulation

is achieved when m → ∞. In addition, we had shown that full correlation is sometimes

an optimal solution, and in this case it is sufficient to consider the modified persuasion

problem, where we consider the utility of the sender as depending on µCN(µ, ..., µ).
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4.2 Optimality of Full Correlation

In the above example we saw that when the sender uses full correlation, it is equivalent to

modifying her utility and using concavification to design just one signal. We will now show

more generally when full (positive) correlation is optimal.

Given some state-independent preferences for the sender v(·), denote by ṽFC
m (µ) ≡

v(aµCN (µ,...,µ)) the sender’s utility when there are m replications of a posterior µ. The sender’s

problem can be rewritten as the following m-modified problem:

Definition 1. In the m-modified problem, the sender has one signal, and she chooses τ(.) ∈
∆(∆(Ω)) to maximize

∑
µ∈∆(Ω) τ(µ)ṽFC

m (µ), subject to τ being a Bayes-plaussible distribution

of posteriors.

In other words, we have taken the standard rational model with one signal and instead

modified the utility of the sender to be defined over the correlation neglect posterior of an

m-repeated realization of that signal. In that case, we can use concavification to solve the

problem. Let VFC
m (µ) denote the concavification of ṽFC

m (µ).

Our first result shows that full correlation is always optimal in the limit. Recall that we

focus on state-independent utilities and that µFB = arg maxµ v(aµ).

Proposition 3. Let v(a) be a continuous function. Then the utility of the sender from the so-

lution of the modified problem converges to her first best as the number of signals increases;

that is, for any ϵ > 0, limm→∞ |VFC
m (p) − ṽ(µFB)| < ϵ.

The intuition behind this proposition parallels the intuition behind the binary example

(see Figure 5.b). Any desirable posterior µFB can be generated by fully correlating m pos-

teriors and putting weight on a posterior that lies in the appropriate direction away from

the prior. When m is large, then this movement away from the prior can be minimal and

hence can be achieved with probability close to one. Thus, when the number of signals is

large, and her preferences are state-independent, we have identified a simple solution to the

problem of the sender.

Away from the limit, using the modified problem can also achieve the optimal solution

for some utilities. Specifically:

Proposition 4. Consider Ω = {0, 1}. Suppose that the utility of the sender is continuous

and supermodular in µ = (µ1, ..., µm). Then the optimal solution to the sender’s problem is

achieved by the solution to the modified problem for any m.

The result follows directly from Lorentz (1953) and from Lemma 3. Lorentz (1953)

shows that for any supermodular utility, the Fréchet bound is the joint distribution that max-

imizes the utility given some fixed marginals. Since by Lemma 3 we can restrict ourselves

to homogeneous signals, using the upper Fréchet bound corresponds to full correlation and

hence the solution of the modified problem leads to the highest value for any supermodu-

lar function.9 Below we provide an example in which the induced utility of the sender is

indeed supermodular.
9Meyer (2017) shows that the less heterogeneous the marginals are according to the cumulative column ma-

jorization order, the higher the upper Fréchet bound is with respect to the supermodular order.
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Example 2 (Supermodular utility). Consider Ω = {0, 1}, Pr(ω = 1) = 1
2 , a receiver whose

optimal action is the expected state and a sender whose utility is single-peaked and convex,

so that v(aµCN (µ)) = −|µCN(µ) − z|α, for some peak z > 1
2 . Suppose that m = 2. Let

α be sufficiently small so that −|µCN(µ1, µ2) − z|α is supermodular in (µ1, µ2). Then we

know that the optimal solution involves full correlation. As a result we can look at the

modified problem, where we consider the utility from −| µ2

µ2+(1−µ)2 − z|α, so now the peak is

at µ = z−
√

z(1−z)
2z−1 rather than at z. This implies, by concavification, that the optimal signal

(which will be repeated twice) has two posteriors, at 0 and z−
√

z(1−z)
2z−1 , with τ( z−

√
z(1−z)

2z−1 ) =
2z−1

2(z−
√

z(1−z))
.

We conclude this Section by showing that the modified problem using full correlation is

not always the optimal solution to the sender’s problem. Consider the following example.

Example 3 (Suboptimality of Full Correlation). Consider Ω = {0, 1} and a receiver whose

optimal action corresponds to her expected state, µ. Suppose that the sender has state

independent preferences that are increasing and continuous for a < 1, with a discontinuity

at a = 1. In other words, the sender receives a bonus when the receiver chooses action 1.

Given a posterior µ, the sender’s induced utility v(µ) is depicted in Figure 7.a.

Using the modified problem, one can compute the optimal signal structure when re-

stricted to two fully correlated signals, this corresponds to Figure 7.b. The solid line cor-

responds to v(aµCN
2 (µ)). The dashed line corresponds to the concavification VFC

2 (µ). This

procedure prescribes full informative signals, i.e., the sender perfectly reveals the state for

every state and reaches an expected payoff of VFC(p).

However, the fact that the receiver perfectly understands each marginal implies that

it is enough for one of the signals to reveal the state (µi = 1), in order for the receiver

to learn the state (µCN = 1). It is therefore possible to improve upon the full correlation

structure by ensuring that when ω = 1 is realised, only one signal reveals the state, while

the other pools with realisations that will occur in state ω = 0. For example, the following

information structure is an improvement over full correlation. Each signal generates three

posteriors, µ ∈ {0, 1
2 , 1}. In state 1, the signals are negatively correlated, generating vector

of posteriors ( 1
2 , 1) and (1, 1

2 ). In state 0, the signals are fully correlated, generating the

vector of posteriors (0, 0) and ( 1
2 ,

1
2 ). Specifically, the joint conditional distribution is:

τ((1, 1
2 )|ω = 1) = τ(( 1

2 , 1)|ω = 1) = 1
2

τ((0, 0)|ω = 0) = 1
2

2−3p
1−p τ(( 1

2 ,
1
2 )|ω = 0) = 1

2
p

1−p

The new information structure is illustrated in Figure 7.c. While in state ω = 1 the sender

always induces a belief of 1, in state ω = 0 the sender induces a weighted average between

0 and µCN
2 ( 1

2 ) leading to a expected utility conditional on ω = 0 that is strictly positive. The

unconditional expected utility of the sender is given by v̂(τ) which is greater than VFC
2 (p).

For the case of two signals and binary state space we have a result analogous to Propo-

sition 4:
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1

0 1
µp

v(µ)

(a) Sender’s Preferences

0

1

1
µp

v(aµCN )

ω = 1

ω = 0

VFC
2 (p)

(b) Full revelation is optimal under full
correlation.

0

1

1
µp 1

2

v̂(τ)

ω = 1

ω = 0

(c) Improvement over full correlation.

Figure 7: Suboptimality of Full Correlation

Proposition 5. Suppose that Ω = {0, 1} and m = 2. When the utility of the sender is

submodular in (µ1, µ2), the optimal information structure involves negative correlation.

The result follows Müller and Stoyan (2002) and Lemma 3. Müller and Stoyan (2002)

show that for any two marginal cumulative distributions F1, F2, the joint distribution that

maximises the expected value of a submodular function is the lower Fréchet bound of

(F1, F2). The lower Fréchet bound, whose cumulative distribution is given by F−(x1, x2) =

max{0, F1(x1) + F2(x2) − 1} can be implemented by the following two random vectors

F−1
1 (u), F−1

2 (1−u) where u denotes a random variable uniformly distributed in [0, 1]. Since

by Lemma 3 we can use homogeneous signals, the lower Fréchet bound involves some

negative correlation.

5 Discussion and extensions

We have shown how a sender can manipulate a receiver who completely ignores correla-

tion. We now discuss how our analysis can be extended to other behavioural biases that

may arise when individuals combine information sources and specifically to a receiver who

can understand some degree of correlation. We then consider how the sender’s ability to

manipulate is curbed when the receiver has limited attention and cannot consider all m

signals.

5.1 Other behavioural biases

Some of the results we presented above allow us to generalize our insights to other cognitive

biases the receiver might have. In particular, assume that the receiver has some aggregation

function µ : ∆(Ω)m → ∆(Ω) by which she aggregates the m signals realizations into one

posterior belief. Correlation neglect, the aggregation rule we used in the paper, µCN , is

one example of such an aggregation rule. Some of the results in the paper were about

properties of the functional ṽ(µ) = v(aµ(µ), ω) and did not rely on the particular structure of

the function µCN .
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For example, whenever ṽ(µ) is symmetric in its arguments, we can focus exclusively

on homogenous signal structures. Moreover, the result that concavification is a sometimes

unachievable upper bound for the solution, obviously holds in this more general model.

Finally, whenever ṽ(µ) is supermodular we can focus our attention on a solution with full

correlation and use the modified problem concavification technique to solve for it.

Some possible aggregation rules can relate to biases such as confirmation bias or projec-

tion bias. Since we focused in our model on the case of full correlation neglect, it is natural

to relax this assumption to think about receivers who to some degree can think about the

possibility of correlation. This is what we discuss next.

5.2 Partial correlation neglect

To model partial correlation neglect, we use the modelling technique developed in Levy and

Razin (2018); they suggest a one-parameter model that captures the degree to which an in-

dividual who combines forecasts entertains correlation, which is detail-free (of the specific

distribution functions). The parameter captures the set of different correlation structures

that the receiver considers when interpreting or explaining multiple sources of information.

The higher is this parameter, the higher degrees of correlation the receiver can contemplate.

As we show, our qualitative results are robust to such an extension.

Specifically, consider a parameter 1 ≤ α < ∞, such that when interpreting the signal re-

alizations the decision maker only considers joint information structures, (S ,Ω, p(ω), q(s, ω)),

so that at any state ω ∈ Ω and for any vector of signals s ∈ S , the pointwise mutual infor-

mation ratio is bounded:
1
α
≤ q(s,ω)

m∏
i=1

qi(si|ω)
≤ α.

Note that when α = 1, the receiver fully neglects correlation, as she can only consider

independent information sources. On the other hand when α > 1, she can consider infor-

mation structures which involve correlation. One way to interpret the case of α > 1 is to

think of the receiver facing ambiguity about correlation structures; in this case α describes

the extent of the ambiguity the decision maker faces.

To be more concrete, consider the binary model with Ω = {0, 1}. Levy and Razin

(2018) analyze an investment application with a safe action and a risky action which pays

more when the state is 1. The receiver has ambiguity aversion la Gilboa and Schmeidler

(1989) which implies that she will invest according to her minimum belief that the state is

1, implying that within our framework,

µ(µ) =
1
α

∏m
i=1 µi(1)
pm−1

1
α

∏m
i=1 µi(1)
pm−1 + α

∏m
i=1 µi(0)

(1−p)m−1

Again, with this well-defined aggregation rule over posteriors, we can use our general

results. For example, if the utility function of the sender over µ(µ) is supermodular, or if it

is binary as in Section 4.1, then full correlation will be the optimal solution and we can use
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concavification to identify the optimal signal structure. Thus, as in our model, the sender

will still use full correlation while the receiver will still consider only partial correlation.

5.3 Limited Attention

Our analysis above has assumed that the number of signals that the sender has at her dis-

posal is exogenously given. In particular, some of our results consider what happens when

the number of these signals, deemed independent by the receiver, are unboundedly large.

But in many applications there would be a reason to believe that the number of such signals

is restricted. To be more concrete consider for example a political strategist trying to influ-

ence voters’ beliefs, by using social media to transmit messages to voters under different

aliases. One constraint on the political strategist is the attention of the voter. The voter is

not going to read an unbounded number of social media messages.

In practice, such strategies will lead to stochastic outcomes; for every 100 messages

the strategist sends a typical voter gets a percentage of them. This implies first that there

is a bound on the number of signals the voter will have and hence on the ability of the

sender to persuade. But also, this implies that the sender cannot fully control which of her

messages the voter will obtain. This implies that the more messages the sender has, the

more uncertainty she will face with regard to the effect of her messages on the voter.

When the optimal strategy of the sender is to fully correlate the realisations of her sig-

nals, then this second effect will not be a concern. As the sender sends ‘identical’ messages,

she will not care about which of them the reader will actually end up reading. However

when the optimal strategy of the sender, with unlimited attention of the receiver, does not

involve fully correlated signals, the effect of limited attention will be twofold. The limited

attention will bound the influence of the sender, but will also affect her optimal correla-

tion strategy. As a result, the sender may react to limited attention in two different ways.

She may change her correlation strategy, maybe shifting towards full positive correlation,

which will limit the risk of having the reader read different types of messages. She may

also reconsider the number of signals she sends. If she can better control what the reader

reads when she lowers the number of signals she sends, she might find it optimal to do so.

Whatever the response of the sender is, limited attention will curb the power of the sender

to persuade.
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A Appendix

Proof of Lemma 1:

Suppose that the conditional posteriors are induced by signal i with information structure

{S i, {qi(· | ω)}ω∈Ω} through Bayes’ rule. Given a realisation si, define

µsi(ω) =
p(ω)qi(si | ω)

p(ω)qi(si | ω) +
∑
υ,ω p(υ)qi(si | υ)

.

Then such signal induces the distribution over posteriors τi such that τi(µsi | ω) = q(si | ω).

If µsi(ω) = 0, this implies that qi(si | ω) = 0 and so τi(µsi | ω) = qi(si | ω) = 0.

Analogously, µsi(ω | si) = 1 if and only if qi(si | ω) > 0 and
∑
υ,ω p(υ)qi(si | υ) = 0. In that

case, τi(µsi | ω) = q(si | ω) > 0.

Lastly, suppose that qi(si | ω) > 0 and
∑
υ,ω qi(si | υ) > 0 i.e., 0 < µsi(ω) < 1. Then,

qi(si | ω) =
µsi(ω)

1 − µsi(ω)
1

p(ω)

∑
υ,ω

p(υ)qi(si | υ)

Therefore:
τi(µsi | ω) = qi(si | ω)

=
µsi (ω)

1−µsi (ω)
1

p(ω)
∑
υ,ω p(υ)qi(si | υ)

=
µsi (ω)

1−µsi (ω)
1

p(ω)
∑
υ,ω p(υ)τi(µsi | υ)

which corresponds to the condition in the Lemma. This holds for any si that is induced

with strictly positive probability and any ω ∈ Ω.
Consider now a set of conditional distributions {τi(. | ω)}ω∈Ω satisfying the conditions

in the Lemma. For each posterior µ in the union of the supports of τi(· | ω), we associate

a distinct signal sµ; sµ , sµ′ whenever µ , µ′. Denote by S i = {sµ | µ ∈ Support(τi(. |
ω)), ω ∈ Ω} and define

qi(sµ | ω) = τi(µ | ω)

To see that {qi(· | ω)}ω∈Ω constitutes a signal structure note that∑
ω

p(ω)
∑

sµ

qi(sµ | ω) =
∑
ω

p(ω)
∑
µ

τi(µ | ω) = 1

This signal obviously induces the desired posteriors. □

Proof of Lemma 2

A receiver with correlation neglect believes that all signals are conditionally indepen-

dent. Therefore upon observing realisation s = (s1, ..., sm) which leads to posteriors µ =
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(µ1, ..., µm) her posterior belief is:

µCN(ω | µ) = µCN(ω | s) = q(s1,...,sm |ω)p(ω)∑
υ q(s1,...,sm |υ)p(υ) =

p(ω)
∏m

i=1 qi(si |ω)∑
υ p(υ)

∏m
i=1 qi(si |υ)

=

∏m
i=1

qi(si |ω)p(ω)∑
ν qi(si |ν)p(ν)

1
p(ω)m−1∑

υ
∏m

i=1
qi(si |υ)p(υ)∑
ν qi(si |ν)p(ν)

1
p(υ)m−1

=

∏m
i=1 µi(ω)

p(ω)m−1∑
υ

∏m
i=1 µi(υ)

p(υ)m−1

.□

Proof of Lemma 3

Consider τ ∈ ∆(∆(Ω)m) and its marginals (τ1, ..., τm). Assume that not all the marginals are

the same. Consider all permutationsσ over the m signals and τσ such that τσ(µσ(1), ..., µσ(m)) =

τ(µ1, ..., µm). Given the symmetry of µCN , µCN(µ) = µCN(µσ), and hence v̂(τσ) = v̂(τ) for

all permutations σ.

Denote τ∗ = 1
m!

∑
σ τ
σ. Obviously, v̂(τ∗) = v̂(τ). Note that the support of τ∗ is the

union of the supports of the marginal distributions. Moreover, the conditional marginals

derived from τ∗ for each i are τ∗i (µ | ω) = 1
m

∑m
j=1 τ j(µ | ω) for all µ ∈ ∪i=1,...,mS upport(τi),

and hence are homogeneous. We now check that this distribution over posteriors τ∗ indeed

satisfies condition (1) and hence can be generated by homogeneous signals. For any µ in

the support of τ∗i , we want to check whether

µ(ω) =
p(ω)τ∗i (µ | ω)∑
υ p(υ)τ∗i (µ | ω)

or equivalently, that

µ(ω)
µ(υ)

=
p(ω)τ∗i (µ | ω)
p(υ)τ∗i (µ | ω)

=
p(ω)

∑
i τi(µ | ω)

p(υ)
∑

i τi(µ | ω)

Denote by Mµ the set of marginals i ∈ {1, ...,m} such that µ ∈ S upport(τi). For all j < Mµ,

τ j(µ | ω) = τ j(µ | υ) = 0. For all i ∈ Mµ, since τ satisfied condition (1) we have that

µ(ω)
µ(υ)

=
p(ω)τi(µ | ω)
p(υ)τi(µ | ω)

which implies
µ(ω)
µ(υ)

=
p(ω)

∑
i∈M τi(µ | ω)

p(υ)
∑

i∈M τi(µ | ω)
=

p(ω)
∑

i τi(µ | ω)
p(υ)

∑
i τi(µ | ω)

.□

Proof of Proposition 1

Consider two fully correlated signals, each yielding posteriors µ and µ′ with probabilities

αω and (1 − αω) respectively in state ω ∈ Ω.
By Lemma 1 above, we have that µ(ω) = pωαω∑

υ pυαυ
and µ′(ω) = pω(1−αω)∑

υ pυ(1−αυ ) .
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Given {αω}ω∈Ω, the expected posterior for the receiver is given by:

Eτ(µCN)(ς) =
∑
ω∈Ω

pω

αω µ(ς)2
pς∑

υ∈Ω
µ(υ)2

pυ

+ (1 − αω)
µ′(ς)2

pς∑
υ∈Ω

µ′(υ)2
pυ


=

∑
ω∈Ω

pω

αω pς(ας)2∑
υ∈Ω

pυ(αυ)2 + (1 − αω) pς(1−ας)2∑
υ∈Ω

pυ(1−αυ )2

 ∀ς ∈ Ω

Consider αω = 1− ϵrω where 0 ≤ rω ≤ 1
ϵ . Then we can write the expected posterior for the

receiver as

∑
ω∈Ω

pω

(1 − ϵrω)
pς(1 − ϵrς )2∑

υ∈Ω
pυ(1 − ϵrυ)2 + ϵrω

pς(rς )
2∑

υ∈Ω
pυ(rυ)2

 ∀ς ∈ Ω.

Taking the derivative with respect to ϵ and evaluating at ϵ = 0 we get for each ς ∈ Ω:

∂Eτ(µCN (ς))
∂ϵ

∣∣∣∣
ϵ=0

= ∂
∂ϵ

∑
ω∈Ω

pω

(1 − ϵrω)
pς(1−ϵrς )2∑

υ∈Ω
pυ(1−ϵrυ)2 + ϵrω

pς(rς )2∑
υ∈Ω

pυ(rυ)2

∣∣∣∣∣∣
ϵ=0

= pς

[ ∑
ω∈Ω

pωrω(
r2
ς∑

υ∈Ω pυr2
υ
− 1) + 2(−rς +

∑
υ∈Ω

pυrυ)
]

= pς
∑
ω∈Ω

pωrω

[
(

r2
ς∑

υ∈Ω pυr2
υ
− 1) + 2(1 − rς∑

υ∈Ω
pυrυ

)
]

∝ (
r2
ς∑

υ∈Ω pυr2
υ
− 1) + 2(1 − rς∑

υ∈Ω
pυrυ

)

The first term is positive if rς > rυ and negative otherwise and the second term has

opposite sign. We now define {rω}ω∈Ω so that the expected posterior moves towards the

degenerate posterior on state η. Define rη = γ, rω = γ + κ for all ω , η, where γ, κ > 0 are

small.

Note that,

-
∑
υ∈Ω

pυrυ = γ + (1 − pη)κ.

-
∑
υ∈Ω

pυr2
υ = γ

2 + (1 − pη)(2γκ + κ2).

Hence we have that

∂Eτ(µCN(η))
∂ϵ

∣∣∣∣∣∣
ϵ=0

∝ (
γ2

γ2 + (1 − pη)(2γκ + κ2)
+ 1 − 2

γ

γ + (1 − pη)κ
)

∝ (γ2(γ + (1 − pη)κ) + (γ2 + (1 − pη)(2γκ + κ2))(γ + (1 − pη)κ)

−2γ(γ2 + (1 − pη)(2γκ + κ2))

= κ2(1 − pη)[γ(1 − 2pη) + κ(1 − pη)]
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and,

∂Eτ(µCN(ω))
∂ϵ

∣∣∣∣∣∣
ϵ=0

∝ (
(γ + κ)2

γ2 + (1 − pη)(2γκ + κ2)
+ 1 − 2

γ + κ

γ + (1 − pη)κ
)

∝ ((γ + κ)2(γ + (1 − pη)κ) + (γ2 + (1 − pη)(2γκ + κ2))(γ + (1 − pη)κ)

−2(γ + κ)(γ2 + (1 − pη)(2γκ + κ2))

= κ2 pη[γ(2pη − 1) − κ(1 − pη)]

Hence by choosing γκ >
1−pη
2pη−1 we have that ∂Eτ(µ

CN (η))
∂ϵ

∣∣∣∣
ϵ=0
> 0 and ∂Eτ(µCN (ω))

∂ϵ

∣∣∣∣
ϵ=0
< 0

for all ω , η. And we can do that for any state η ∈ Ω, hence by combining these signals we

can move the expectation in any direction.□

Proof of Proposition 2

The proof of Proposition 2 uses the following Lemma:

Lemma 4. Consider a conditional distribution over posteriors {τi(· | ω)}ω∈Ω induced by a

signal given a Bayesian updater. Denote by M(ω, k) = {µ ∈ ∆(Ω) | µ(ω) < k} the set of

posteriors that gives a probability mass to ω of less than k, then

τi(M(ω, k) | ω) <
k

p(ω)

Proof of Lemma 4
By Lemma 1 for any µ ∈ M(ω, k) that is induced with strictly positive probability, µ(ω) =
p(ω)τi(µ|ω)
τi(µ)

< k. But this implies that τi(µ | ω) < k
p(ω)τi(µ) and summing over all µ ∈ M(ω, k)

we get τi(M(ω, k) | ω) =
∑
µ∈M(ω,k) τi(µ | ω) < k

p(ω)
∑
µ∈M(ω,k) τi(µ) ≤ k

p(ω) . □

Proof of Proposition 2

For any µ ∈ Mω(δ) we have,

µCN(ω | µ) =

m∏
i=1
µi(ω)

(pω)m−1

∑
υ∈Ω

m∏
i=1
µi(υ)

(pυ)m−1

> 1 − δ ⇔
∑
υ,ω∈Ω

m∏
i=1
µi(υ)

p(υ)m−1 <
δ

1 − δ

m∏
i=1
µi(ω)

p(ω)m−1

This implies that for any µ ∈ Mω(δ) and any υ , ω ∈ Ω,
m∏

i=1
µi(υ) < δ

1−δ
(

p(υ)
p(ω)

)m−1
.

For any υ , ω, denote i(µ, υ) ∈ arg mini=1,...m µi(υ) we have

(µi(µ,υ)(υ))m <

m∏
i=1

µi(υ) <
δ

1 − δ

(
pυ
pω

)m−1

⇔ µi(µ,υ)(υ) <
(
δ

1 − δ

) 1
m
(

p(υ)
p(ω)

)m−1
m

.

Denote by M(i, υ, δ) =
{
µ′′i (υ) <

(
δ

1−δ
) 1

m
(

p(υ)
p(ω)

)m−1
m

}
. By Lemma 4,
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τi (M(i, υ, δ) | υ) < 1
p(υ)

(
δ

1 − δ

) 1
m
(

p(υ)
p(ω)

)m−1
m

.

As τ(µ′ | υ) ≤ τi(µ′i | υ), we have that for any υ , ω:

τ(Mω(δ) | υ) ≤
m∑

i=1

τ(M(i, υ, δ) | υ) ≤
m∑

i=1

τi(M(i, υ, δ) | υ) ≤ m
1

p(υ)

(
δ

1 − δ

) 1
m
(

p(υ)
p(ω)

)m−1
m

.

Hence,

τ(Mω(δ)) =
∑
υ∈Ω

p(υ)τ(Mω(δ) | υ) ≤ p(ω) +
∑
υ,ω

m
(
δ

1 − δ

) 1
m
(

p(υ)
p(ω)

)m−1
m

−→δ→0 p(ω)

□

Proof of Proposition 3:

Consider µFB the optimal posterior from the point of view of the sender. Suppose first that

µFB(ω) , 0 for all ω ∈ Ω. Let µ̂ be defined in the following way:

µ̂m(ω) =
µFB(ω)

1
m p(ω)

m−1
m∑

v∈Ω µFB(v)
1
m p(v)

m−1
m

which then implies that:

µCN
m (µ̂m)(ω) = µFB(ω)

Note that since p is interior, we can always design a signal structure τ̂m with two realizations

µ̂m and µ′m, where µ′m at a distance δ > 0 from p, and such that the Bayesian plausibility

constraint is satisfied:

τ(µ̂m)µ̂m + (1 − τ(µ̂m))µ′m = p.

Note that when m→ ∞, then µ̂m is arbitrarily close to p, as

µ̂m(ω) =
p(ω)1− 1

m∑
v∈Ω( µ

FB(v)
µFB(ω) )

1
m p(v)1− 1

m

→m→∞ p(ω).

As a result, given the Bayesian plausibility constraint, and maintaining µ′m always at a fixed

distance δ > 0 away from p, τ(µ̂m)→m→∞ 1, implying that limm→∞ |v̂(τ(µ̂m))− ṽ(µFB)| < ϵ.
Note that we have found a signal which yields a utility arbitrarily close to µFB in the

limit as m grows large. Note that as concavification provides the optimal solution for any

m, then

lim
m→∞

|VFC
m (p) − ṽ(µFB)| < lim

m→∞
|v̂(τ(µ̂m)) − ṽ(µFB)| < ϵ.

Consider now the case in which µFB(ω) = 0 for some ω ∈ Ω. By the continuity of the

utility function, we can find µS B such that µS B(ω) , 0 for allω ∈ Ω, with |ṽ(µS B)−ṽ(µFB)| <
ϵ
2 and repeat the above with µS B and ϵ2 . □
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Proof of Theorem 1

We consider m signals with the same marginal distribution. Each individual signal i gen-

erates n posteriors (n = |Ω|),{µω}ω∈Ω. The conditional distribution over posteriors given i

is:

τi(µω|ω) = α(m), τi(µυ|ω) = β(m) =
1 − α(m)

n − 1

Note that by Lemma 1, the posteriors {µω}ω∈Ω are pinned down by α(m) and β(m).10 We

choose α(m) and β(m) such that, α(m) ∈ ( 1
n , 1) and

lim
m→∞

α(m) =
1
n

and lim
m→∞

1
m2α′(m)

= 0 (2)

(For example, α(m) = 1
n +

1√
m

would work).

We now construct a joint information structure with these marginals that in state ω will

generate with probability converging to 1 (as m increases) a posterior µCN(µ) converging

to qω. In order to simplify the notation we eliminate the references to m in our variables

whenever it does not lead to confusion.

Given a vector of posteriors µ = (µ1, ..., µm), denote by zυ the proportion of posterior µυ out

of the m posteriors (zυ ∈ { 0
m , ...,

m
m }, and

∑
υ∈Ω zυ = 1).

Given the vector z = {zυ}υ∈Ω, the receiver’s posterior is given by:

µCN(ω | z) =

∏
υ∈Ω µ

υ(ω)mzυ

p(ω)m−1∑
η

∏
υ∈Ω µυ(η)mzυ

p(η)m−1

=
p(ω)

[
αzωβ1−zω

]m∑
υ p(υ)

[
αzυβ1−zυ

]m (3)

Suppose that in state ω ∈ Ω the sender wants to generate a posterior qω ≫ 0. Define the

proportions ζω = {ζωυ }υ∈Ω as follows:

ζωυ =
1
n
+

1
m

ln
(

qω(υ)/p(υ)

[∏η qω(η)/p(η)]
1
n

)
ln

(
α(m)
β(m)

)
Note that

∑
υ∈Ω ζ

ω
υ = 1 and that given conditions (2), ζωυ converges to 1

n , and for sufficiently

large m, ζωυ > 0 for all υ ∈ Ω. The vectors ζωυ correspond to the vectors of proportions that

the sender would ideally like to generate,11 since

µCN(ζω) = qω.

Denote by zω the vector of proportions that is closest to ζω.12 As m goes to infinity,

zω(m) −→ ζω(m) and µCN(zω(m)) −→ qω.

10The probabilities α(m) and β(m) are independent of the state, and hence all the signals have indeed the same
marginal distributions.

11In general, it will not be possible to generate exactly those weights with the m posteriors unless ζωυ are rational
and m is sufficiently large.

12Recall that zωυ ∈ { 0
m ,

1
m , ..,

m
m }, so the set of proportion vectors that can be generated with m signals is finite.
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What remains to be shown is that the sender can design a joint distribution such that for

each state ω ∈ Ω, the distribution induces the vector of proportion zω with probability ap-

proaching 1, and still is compatible with the marginal distributions of the signals described

above.13

For any ω ∈ Ω define
γω = min

{
α
zωω
,min

{
β
zωυ
|υ ∈ Ω

}}
,

λωω = α − γωzωω,

λωυ = β − γωzωυ .

(4)

Note that γω ≤ 1, because if not we would have
∑
υ∈Ω zωυ < 1. Moreover γω +

∑
υ λ
ω
υ = 1

Define as well {δω}ω∈Ω the posteriors that results when all the posteriors are equal to µω:

δω = (µω, ..., µω). This corresponds to a vector of proportions eω in which eωω = 1 and

eωυ = 0 for all υ , ω.

Consider the following joint information structure:

For any state ω ∈ Ω, with probability γω it generates the vector zω, with probability λωυ it

generates the vector eυ. Then the conditional probabilities over posteriors are:

τS
m
((zω)|ω) = γω

τS
m
(δω|ω) = λωω

τS
m
(δυ|ω) = λωυ

Clearly, this joint signal distribution generates the marginals we described:

τi(µω|ω) = γωzωω + λ
ω
ω = α

τi(µυ|ω) = γωzωυ + λ
ω
υ = β, ∀υ , ω

Moreover, α(m), β(m) and zωυ (m) converge to 1
n for all ω, υ ∈ Ω, and therefore γω(m)

converges to 1 and

τS
m
((zω)|ω)→ 1 with µCN(zω) −→ qω

Finally, if the posteriors the sender wants to achieve are not interior, we could always

approximate them by a sequence of interior posteriors {qωm} and we can construct the joint

information as above in which the ζω(m) is constructed using qωm ≫ 0. □

Figure 8 illustrate the construction. The point p represents the prior and qω is the

posterior that we want to achieve in state ω. The signals have three realisations {1, 2, 3}.
Depending on the realisation the posterior moves closer to the corresponding state. The

13Note that if the sender were to induce the vector zω with probability 1 in state ω, then the marginal distribution
of the signals would be:

τi(µω|ω) = zωω
τi(µυ|ω) = zωυ ∀υ , ω

which in general are distinct from α(m) and β(m) (since α(m) and β(m) are independent of ω and generally all the
zωυ will be different. However, it is enough to show that for each state ω, the sender can generate the frequency
vector zω of marginal posteriors with probability approaching 1.
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ω = 1

ω = 2

ω = 3

p

q1

q2

q3

e1

e2

e3

z1

z3

z2

Figure 8: Approximation to Full Manipulation

small dots on the dashed lines represent the posteriors when the receiver gets s signals

with the same realisation. Suppose that we have m signals. The we can find the different

combinations of posteriors that we can generate given these signals. In Figure 8 we have

represented in blue the set of posteriors that we can generate with m = 3 signals.

The steps vary with the α we consider, the closer to 1
3 the smaller are the steps and the

finer the grid we can achieve as we increase m.

Given a particular m and α we find among all the combination of realisations (i.e., all

the possible vectors z) the one closer to qω for each ω, and denote it by zω. In Figure 1,

given m = 3 and the α, we have that z1 =
1
3 (1, 2, 0), z2 =

1
3 (0, 2, 1) and z3 = 1

3 (2, 0, 1).

(In general it will not fall exactly on qω unless qω is a vector of rational numbers, α is also

rational, and we have enough signals).

Suppose that the joint signal structure only generates the vectors of frequencies zω.

Then in state ω, zωω should be equal to α. But α is independent of the state, so that would

mean that zωω = zυυ which is clearly not general (in particular in the example depicted

z1
1 =

1
3 ,

2
3 = z2

2). In order to be able to induce those vectors with the highest possible

probability we need to complete the signal structure with the extreme vectors which have

all the realisation equal to each other eω.
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