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The Random Element in Economic Decisions

Standard theory implies that a given DM’s choice should be a
perfectly predictable function of the distribution of returns
associated with alternative options

— they should with certainty choose the option that implies the
highest expected utility (or at any rate, the distribution of
returns that is most preferred under some well-defined ordering)
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The Random Element in Economic Decisions

This postulate isn’t easily testable in the case of decisions
observed “in the wild”

— hard for an observer to be sure exactly how the possible
returns are understood by a given DM, or what their personal
preferences may be

But it can be tested in the case of laboratory experiments, in
which both possible payoffs and their probabilities are stated by
the experimenter, and the same choice problem can be
repeated multiple times

— and there choices are observed to be random, though with
probabilities that vary systematically with the properties of the
gambles offered
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Mosteller and Nogee (1951)

AN EXPERIMENTAL MEASUREMENT OF UTILITY 

was determined (these are rounded val- 
ues). These, and the arbitrarily defined 
points [U(oo) = o utiles and U(-5S) = 
- i utiles] can be connected by straight- 
line segments to form the utility curve of 
a subject. In Figure 3, illustrations of the 
utility curves are given for a few sub- 
jects. For reasons of scale we have shown 
values for only a few different utile po- 
sitions. Logarithmic scales would be 
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FIG. 2.-In this graph the data of Table 8 for subject B-I, hand 5522i, are plotted to show how the in- 
difference point is actually obtained. 

somewhat misleading because some in- 
terest attaches to the curvature. 

It was not possible to secure utility 
curves as complete as those in Figure 3 
for all subjects. The behavior of one sub- 
ject in the pilot study was so erratic that 
no utility curve at all could be derived 
for him. For two student subjects in the 
experiment it was possible to derive only 
a short section of the curve. Their in- 
difference points for the high hands (i.e., 
those in which the probability of winning 
was small and which gave the values for 
IO, 20, and ioi utiles) were so high that 
the experimenters felt they could not af- 

ford to make the offers necessary to get 
the subjects to choose to play (if such 
offers existed). 

There was nothing in the experimental 
procedure which coerced any subject to 
play at any time. It was possible for a 
subject to take his dollar at the beginning 
of a session and not play, thus assuring 
himself of $i.oo. It is interesting that this 
never happened. 

One subject showed markedly super- 
stitious behavior toward one hand. He 
seldom played against it for any of the 
offers made, even though he would ac- 
cept the same, or even smaller, offers 
against a hand which was less likely to be 
beaten. When asked about this after the 
project was completed, the subject said 
that he had been aware of his behavior 
but that he simply felt that the particu- 
lar hand was unlucky for him and that he 
"just didn't like it." 

In Table 9 are the indifference offers 
corresponding to each utility. When 
these are graphed, a rough utility curve 
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Understanding Randomness of Choice

A common interpretation of such observations: people have a
well-defined valuation for each possible option, which depends
only on its features (and hence is invariant across contexts)

— but instead of choosing the highest-valued option with
certainty, the probability of choosing a given option depends on
how great the difference in value relative to the alternatives

This explains Mosteller and Nogee’s method: they expect
vonN-M utility to explain when two lotteries are equally
valued, as revealed by 50-50 choice frequency
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Stochastic Choice From Comparison Noise
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common functional form: Φ(∆) = e∆/ϕ

e∆/ϕ+1
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Understanding Randomness of Choice

This kind of model of choice can be justified in terms of an
additive random utility model:

choices based not on uA, uB , but instead on occasion-specific
values

ũi = ui + ϵi ,

where random term ϵi is an independent draw (for each good,
and on each occasion) from some distribution F (ϵ)

the good i that is chosen is the one with the highest value of ũi

on that occasion

the nature of the distribution F (ϵ) determines the function
Φ(∆) [e.g., probit or logit model]
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“Late Noise” vs. “Early Noise”

Models of this kind can all be viewed as involving only
comparison noise

— models in which noise only enters at the end of the choice
process, when the (accurately computed) values of the various
choice options must be compared in order to choose between
them

But there is an alternative possible source of randomness in
responses: one might suppose that the features that define the
available options are corrupted by noise, before they can be
integrated to compute assessments of value
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“Late Noise” vs. “Early Noise”

This would then result in random choice [as a function of the
objective features], even if the value estimates (and hence
choices) are perfectly optimal, conditional on their being based
on noisy representations

A common interpretation of randomness of perceptual
judgments

early stages of processing of many sensory features are
demonstrably random [random firing of cortical neurons can be
measured, and can in some cases be shown to explain
randomness of judgments: e.g., Newsome et al., 1989]

yet judgments may be modeled as optimal, conditional on noisy
sensory data [e.g., signal detection theory, Bayesian models]
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Imprecision in Numerical Cognition

But does this really provide a possible explanation for the
randomness of responses in experiments like that of Mosteller
and Nogee?

One may admit that when number information is presented
visually, rather than symbolically, this results in errors in
perception

— but in experiments like that of M&N, the monetary amounts
are described using symbols

— shouldn’t this allow precise recognition of the amounts
offered?
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Imprecision in Numerical Cognition

In fact, evidence suggests that even when symbolic
representations of numbers are presented [e.g., Arabic numerals],
these activate an internal representation of the quantity
indicated that is imprecise in the same way as with
perception of sensory magnitudes (including numerosity)
[Dehaene (2011), Grossberg and Repin (2003)]

This “semantic” representation allows judgments of the
approximate magnitudes of symbolically-presented numbers

when very rapid judgments must be made [next slide]

when information presented symbolically must later be recalled
[e.g., Dehaene and Marques (2002)]

by patients with brain injuries that impair arithmetic ability [see
Dehaene (2011)]
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Imprecision in Numerical Cognition

Example: Dehaene et al. (1990), Experiment 2:

subjects are presented with two-digit Arabic numerals [other
than 65]

asked to press one of two keys to quickly indicate whether the
number shown is larger or smaller than 65

Findings: slowest responses (and most errors) for numbers
near 65, faster responses (and fewer errors) the more distant
the number from 65, either below or above

Why response time is relevant:
In dynamic extension of model of noisy retrieval of information,
noisier individual observations ⇒ draw more before decision

and decision less accurate
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Dehaene, Dupoux and Mehler (1990)

top panel: distribution of response times for each number
bottom panel: error rate for each number
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Imprecision in Numerical Cognition

Note: slow response for numbers near 65 NOT simply due to
fact that question can’t be answered from first digit alone when
first digit is 6

no discontinuity in response time when move from high 50s to
low 60s, or high 60s to low 70s

slower response for high 50s than low 50s, for high 40s than low
40s; also for low 70s than high 70s, for low 80s than high 80s

Results suggest that presentation of Arabic numeral rapidly calls
to mind a semantic representation of the number, as a quantity
of a certain size

— which representation is however imprecise (and random),
just as with subjective representations of sensory magnitudes
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Imprecision in Numerical Cognition

Evidently, answer can be given more quickly when question can
be answered using this quickly-available semantic representation,
rather than having to consciously recall arithmetic meaning of
numerals and exact order of precise numbers [though of course
normal adults can do that, too]

Possible interpretation of experiments like Mosteller-Nogee:
perhaps when subjects make intuitive judgments about choice
between gambles [not resorting to any conscious arithmetic
calculation], they consider whether the upside possibilities are
large enough to outweigh the downside risk, using this fuzzy
semantic representation of the magnitudes mentioned in the
problem description

— randomness in the semantic representation then gives rise to
randomness in judgments of relative value of two options
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Does the Nature of the Noise Matter?

Yet one might wonder: is there any observationally
distinguishable difference between models with

noisy evidence about the situation, but a reliable (perhaps
optimal) response to the noisy data [“early noise”]

VS.

reliable recognition of the situation, and computation of the
values of presented choices, but a noisy response on basis of
that info [“late noise”]?
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Does the Nature of the Noise Matter?

Cases where the hypothesis of early noise + optimal decoding has
different implications:

1 Biases in the estimation of individual features of a choice
option, resulting from noisy encoding of the individual features
of that option (rather only encoding its overall value), can result
in estimates of its overall value that are not simply a function of
the true overall value [i.e., the value that would be computed
from the true features]
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The Rabin (2000) Paradox

People are observed in the laboratory to make risk-averse choices
even when stakes are quite small

— yet if one were to explain this as reflecting diminishing
marginal utility of wealth, one would have to hypothesize
such a sharply decreasing MUW as to imply extreme risk
aversion in the case of larger gambles, that we don’t see
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The Rabin (2000) Paradox

Consider, for example, the Mosteller-Nogee data shown above:
“indifference” requires X ≈ 10.7 cents

rationalizing this in terms of an ARUM (or “control cost”
model), with “true” utility given by EUT, would require U(W )
such that

U(W0 + 0.055) − U(W0) < U(W0) − U(W0 − 0.05)

but this degree of curvature, if holding for all W0, would imply
that

U(W0 + 1T ) − U(W0) < U(W0) − U(W0 − 1),

so that the same DM should (more often than not) decline a
bet that offers 50 percent chance of winning $1T , but 50
percent chance of losing $1
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The Rabin (2000) Paradox

The behavioral literature typically concludes from this that
people don’t care only about their utility U(W ) from overall
wealth (integrating gains or losses from the experiment with
their other sources of wealth)

— instead, “narrow bracketing” of the prospective
gains/losses from the individual gamble; and “loss aversion” in
the consideration of gains and losses in isolation

If we instead suppose that decision must be based on a noisy
representation of the terms of the gamble offered, can explain
small-stakes risk aversion under hypothesis of a decision rule
that maximizes average U(W ) across possible decision
problems (Khaw et al., 2021)
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Noisy Representation of a Gamble

Suppose that, as in the Mosteller-Nogee experiment, a DM must
choose whether to pay C for a gamble that will pay X with
probability 1/2 (but zero otherwise); but suppose that the
decision must be made on the basis of noisy retrieved
representations of the quantities C ,X specified on that trial

Then a decision rule that is optimal for the DM (that would
maximize the average U(W ) resulting from decisions) would
require acceptance of the gamble if and only if noisy
representation r satisfies

1

2
E[U(W0 + X − C ) |r ] +

1

2
E[U(W0 − C ) |r ] > E[U(W0) |r ]
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Noisy Representation of a Gamble

If C ,X are both small relative to the curvature of U(W ), we
can use the approximation

U(W0 + ∆) ≈ U(W0) + U ′(W0) · ∆

to conclude that (an approximately) optimal decision rule will
accept the gamble if and only if

E[X |r ] > 2 · E[C |r ],

independently of what is known (or can be inferred) about W0

Thus decision depends only on inference about parameters of
this gamble — as if “narrow bracketing,” though decision rule
actually optimized for an objective that assumes payoffs only
matter due to their effect on overall lifetime budget
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Noisy Representation of a Gamble

The location of the “indifference point” can also imply risk
aversion, despite stakes being very small — but not because
U ′(W ) is assumed to be sharply increasing

Only need for the condition

E[X |r ] > 2 · E[C |r ],

to be satisfied with probability less than 1/2, even when
X > 2C (though not larger by a factor much greater than 2)

— this can happen, if “regression to the mean” shrinks the
estimated magnitude of the larger quantity X by a larger factor,
on average [to discuss further in Lecture 2]
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Does the Nature of the Noise Matter?

2 Noisy-coding theory implies that manipulations that change the
degree of coding precision should change estimation bias

for example, varying time pressure

— if internal evidence is a stream of noisy signals [as for
example in the DDM], then less time for collecting additional
signals should mean noisier cumulative evidence

— Bayesian decoding of the noisier internal representation can
result not just in more variable estimates, but in larger
average bias in valuations

Polania et al. (2019) find that increased time pressure changes
average ratings of food items

— in a way consistent with Bayesian decoding of noisy internal
representation of items’ values
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Does the Nature of the Noise Matter?

Other methods of manipulating encoding noise can similarly
influence valuation biases

Enke and Graeber (2023) elicit “certainty equivalent” values for
simple lotteries [an amount X is paid with probability p;
otherwise, payoff is zero]

— look at how bias in valuation [CE/X different on average
from p] varies with p

— finding: CE/X > p for small p, while CE/x < p for large p,
regardless of sign of X [replicating findings of Tversky and
Kahneman, 1992]
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Does the Nature of the Noise Matter?

As discussed further in Lecture 3, this can be interpreted as
consequence of Bayesian decoding of a noisy internal
representation of p

— internal noise [“cognitive uncertainty”] ⇒ estimates of p
biased toward the prior mean [p̄ = 0.5 in symm. case]

Enke and Graeber (2023) manipulate the degree of noise in the
internal representation by presenting the payoff probability in a
more complex form [compound lottery, rather than simply
stating the implied probability p of the non-zero payoff]

— and show that increasing noise in this way leads to increased
bias in the elicited certainty equivalents
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Enke and Graeber (2023)
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Figure 2: Probability weighting function separately for subjects above / below average cognitive uncer-
tainty. The partition is done separately for each probability × gains / losses bucket. The plot shows av-
erages and corresponding standard error bars. The figure is based on 2,525 certainty equivalents of 700
subjects.

Table 1 provides a regression analysis of these patterns, which directly corresponds

to estimating the neo-additive weighting function in equation (7). Our object of interest

is the extent to which a subject’s normalized certainty equivalent is (in)sensitive to vari-

ations in the probability of the non-zero payout state. Thus, we regress a participant’s

absolute normalized certainty equivalent on (i) the probability of receiving the non-zero

gain / loss; (ii) cognitive uncertainty; and (iii) an interaction term. In our baseline spec-

ification, we do not include subject fixed effects, meaning that we embrace the variation

that results from across-subject heterogeneity in cognitive uncertainty.

The results show that higher cognitive uncertainty is associated with lower respon-

siveness to variations in objective probabilities, in both the gains and the loss domain. In

terms of quantitative magnitude, the regression coefficients suggest that with cognitive

uncertainty of zero, the slope of the neo-additive weighting function is given by 0.65,

yet it is only 0.34 for maximum cognitive uncertainty of one. A different way to gauge

quantitative magnitudes is to standardize cognitive uncertainty into a z-score. When

doing so, the regression results (not reported) suggest that an one standard deviation

increase in cognitive uncertainty decreases the slope of the neo-additive weighting func-

17

cognitive uncertainty increased by more complex presentation
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Does the Nature of the Noise Matter?

3 Noisy-coding hypothesis can also explain another type of
sensitivity of choice to the context in which options are
encountered: more random choice between two given options,
when they are drawn from a wider range of possibilities
(presented on other trials)

this is another example of sensitivity of choice to the DM’s
prior about what the data are likely to be

but not because of how the prior is used in interpreting noisy
evidence; instead, the precision of the encoding can vary with
the prior (and hence across contexts)

predicted by theories of “efficient coding”
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Efficient Coding

Idea: the neural system used to produce internal representations
of particular quantities has only a finite capacity to represent
different amounts in sufficiently distinguishable ways

— like the finite capacity of a communications channel, in
Shannon’s theory
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Efficient Coding

Idea: the neural system used to produce internal representations
of particular quantities has only a finite capacity to represent
different amounts in sufficiently distinguishable ways

Efficient coding: the hypothesis that external stimuli are
mapped into the limited variety of possible internal states in
such a way as to make decisions as accurate as possible

— worse discrimination between some states may be accepted,
as the price of allowing sharper discrimination between other
states, that it matters more to be able to distinguish

This implies that the encoding scheme should depend on the
prior (Payzan-LeNestour and Woodford, 2022)

Woodford (Columbia) Lecture 1 November 10, 2025 30 / 44



Efficient Coding

Idea: the neural system used to produce internal representations
of particular quantities has only a finite capacity to represent
different amounts in sufficiently distinguishable ways

Efficient coding: the hypothesis that external stimuli are
mapped into the limited variety of possible internal states in
such a way as to make decisions as accurate as possible

— worse discrimination between some states may be accepted,
as the price of allowing sharper discrimination between other
states, that it matters more to be able to distinguish

This implies that the encoding scheme should depend on the
prior (Payzan-LeNestour and Woodford, 2022)

Woodford (Columbia) Lecture 1 November 10, 2025 30 / 44



Range Normalization

Implication of a variety of different efficient coding theories:
range normalization

Idea: the accuracy of discrimination between any two
magnitudes will be worse when these two magnitudes are drawn
from a prior distribution with a wider range

the larger range of objective magnitudes must be mapped into
the same range of possible internal representations

hence the two magnitudes will be closer together in
“psychological space” when the objective difference between
them is a smaller fraction of the overall range

making the encoding noise more significant relative to the
degree of difference in their internal representations
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Range Normalization

An illustration, where the internal representations can actually
be observed:

Padoa-Schioppa (2009) measures the internal representation of
the values of different choice options, by the rate of firing of
certain cells in the macaque OFC [“offer cells”], when monkeys
choose between offers of different quantities of two types of
juice

the firing rate is higher when the quantity of apple juice offered
is higher [this is what identifies the cells as “offer cells”]

but the firing rate associated with a given quantity of juice is
smaller, when the range of quantities of juice that occur on
different trials [in that experimental session] is greater
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Padoa-Schioppa (2009)
VOL. VOL NO. ISSUE ADAPTIVE CODING: A PUZZLE 3

Figure xx. a. Range adaptation in orbitofrontal cortex. Each line represents the average neuronal response 
(baseline-substracted) plotted against the offer value. Different colors indicate different value ranges.  b. Challenge 
posed by range adaptation. In this simplified model, choices result from the activity of two neurons encoding offer 
value A (left) and offer value B (right) When the range of juice B increases (light blue), the offer value B cell adapts.
The indifference point, for which the two cells have equal firing rate, shifts such that juice B. If decisions are made 
by comparing firing rates, juice B woulde be devalued.
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Figure xx. a. Range adaptation in orbitofrontal cortex. Each line represents the average neuronal response 
(baseline-substracted) plotted against the offer value. Different colors indicate different value ranges.  b. Challenge 
posed by range adaptation. In this simplified model, choices result from the activity of two neurons encoding offer 
value A (left) and offer value B (right) When the range of juice B increases (light blue), the offer value B cell adapts.
The indifference point, for which the two cells have equal firing rate, shifts such that juice B. If decisions are made 
by comparing firing rates, juice B woulde be devalued.
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FIGURE 1. CHALLENGE POSED BY RANGE ADAPTATION.

Note: Left Panel: Range adaptation in orbito-frontal cortex. Each line represents the average neuronal response (baseline-subtracted)
plotted against the offer value. Different colors indicate different value ranges.
Right Panel: In this simplified model, choices result from the activity of two neurons encoding offer value A (left) and offer value B
(right) When the range of juice B increases (lighter line), the offer value B cell adapts. The indifference point, for which the two cells
have equal firing rate, shifts such that juice B. If decisions were made by comparing firing rates, the same quantity of juice B would be
chosen less frequently.
Source: Reproduced from Padoa-Schioppa (2009)

pears unlikely that this result simply reflect lack
of statistical power.

A second alternative solution to the challenge
posed by range adaptation would be if the num-
ber of cells encoding the offer value of one par-
ticular juice depended on the value range for that
juice. Specifically, one could imagine that more
neurons are added to the population encoding
the value of one particular juice when the range
of that juice is increased. This increase could
in principle balance the effect of range adapta-
tion to keep behavioral preferences stable. To
test this hypothesis we considered again the data
set of Padoa-Schioppa (2009). Recordings were
generally obtained from multiple neurons in par-
allel. Offer value responses (937 in total) were
recorded in 240 sessions. For each session, we
determined the juice with the maximum value
range. (Value ranges were compared taking into
account the relative value of the juices.) We also
counted the number of responses encoding the
offer value of A or B. Across the population, we
constructed a 2× 2 contingency table represent-
ing the number of responses encoding the offer
value of A and B (rows) recorded in sessions
in which 1A > 1B or 1A < 1B (columns).
Contrary to the hypothesis under consideration,
we found that the two classifications were statis-
tical independent (p = 0.51, chi-square test).

To conclude, our analysis indicates that deci-
sions are not simply made by comparing the fir-

ing rates of different groups of offer value cells.
To the contrary, the neuronal network that gener-
ates the decision must essentially ”undo” range
adaptation in such a way that indifference func-
tions do not depend strongly on the value range.

II. Model of choice

To formulate precisely how choices depend on
the firing rate of the offer neurons, we present
a model of choice. The heart of the model is
a system of equations describing time evolution
of the gating variables (fraction of NMDA re-
ceptors that are open at time t , see Wong and
Wang, (2006) for details). We use here the re-
duced form model, 2 described for i = A, B by:

(2)
d Si

dt
(t) = −

Si (t)
τ
+ (1− Si (t))H(X i )

where Si (t) ∈ [0, 1] are the gating variables,
Si (0) = 0, X i

≡ αSi (t) − βS j (t) + I i (t), i =
A, B, j 6= i , and I i (t) is the input for the op-
tion i at t . Input goes from offer value neurons
to taste neurons, whose firing rate eventually de-
termines the choice. The quantities τ, α, β > 0
are dimensional parameters. The function H de-
scribes the neuronal response to the current in-

2See Appendix, page 1327, of Wong and Wang (2006)

vertical axis = firing rate of “offer cell”
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Range Normalization

The fact that two drops of juice are differently encoded when 4
is the upper bound, than when 10 is the upper bound, doesn’t
mean that they are valued more (on average) in the former case

the “decoding” of the internal representation seems to adjust to
the range in an efficient way as well (Rustichini et al., 2017)

But the change in encoding when the range is 10 does mean
that two drops are not as accurately distinguished from four
drops, as is the case when the range is 4

resulting in less predictable choices
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Range Normalization

Frydman and Jin (2022) show that the same seems to be true of
the internal representation of numerical quantities in humans

task: a two-digit Arabic numeral is presented, and the subject
must (rapidly) say whether it is greater or less than 65

replicating the study of Dehaene et al. (1990), discussed above;
but with numbers drawn from two different distributions

consequence: more mistakes (and slower responses) when the
number presented is closer to 65

but for numbers near 65, responses are slower (and yet more
mistakes) when the numbers are drawn from a wider range
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Number Comparison [Frydman and Jin (2022)]

Figure 8. Classification performance and response time for the perceptual choice task

Panel A: the x-axis denotes the integer X that is presented on each trial. The y-axis denotes the
proportion of trials for which subjects classified X as greater than 65. Panel B: the y-axis denotes
the average response time for the subject to execute a decision, for those trials on which the subject
responded correctly. Data are pooled across subjects over all test trials in the first condition, and
thus represent between subjects comparisons. The length of the vertical bar inside each data point
denotes two standard errors of the mean. Standard errors are clustered by subject.
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Panel A: the x-axis denotes the integer X that is presented on each trial. The y-axis denotes the
proportion of trials for which subjects classified X as greater than 65. Panel B: the y-axis denotes
the average response time for the subject to execute a decision, for those trials on which the subject
responded correctly. Data are pooled across subjects over all test trials in the first condition, and
thus represent between subjects comparisons. The length of the vertical bar inside each data point
denotes two standard errors of the mean. Standard errors are clustered by subject.
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Range Normalization

This suggests a model of noisy encoding of numerical
magnitudes in which

rx ∼ p(rx |m(X ))

where p(rx |m) is the same across contexts, but the mapping
m(X ) depends on the distribution of values of X used

m(X ) must adjust so that m has the same bounded range,
regardless of the range over which X varies

and similarly for the internal representation of the certain
alternative C

Consequence: larger range of variation in X and C should result
in noisier choice between lotteries

Woodford (Columbia) Lecture 1 November 10, 2025 37 / 44



Range Normalization

This suggests a model of noisy encoding of numerical
magnitudes in which

rx ∼ p(rx |m(X ))

where p(rx |m) is the same across contexts, but the mapping
m(X ) depends on the distribution of values of X used

m(X ) must adjust so that m has the same bounded range,
regardless of the range over which X varies

and similarly for the internal representation of the certain
alternative C

Consequence: larger range of variation in X and C should result
in noisier choice between lotteries

Woodford (Columbia) Lecture 1 November 10, 2025 37 / 44



Lottery Choice [Frydman and Jin (2022)]

Figure 5. Average probability of risk taking across volatility conditions

Panel A: the graph plots, for each volatility condition, the probability of risk taking against the
difference in expected values between the risky lottery and the certain option, pX − C. The
probability of risk taking is computed as the proportion of trials on which subjects choose the risky
lottery. Data are pooled across subjects over all common trials in the first condition, and thus
represent between subjects comparisons. For each volatility condition, we bin the running variable,
pX − C, to its nearest integer value, and plot the mean for each bin. The length of the vertical
bar inside each data point denotes two standard errors of the mean. Standard errors are clustered
by subject. Panel B: each point represents one of the 30 common trials in the first condition.
The x-axis measures the probability of risk taking in the high volatility condition, while the y-axis
measures the probability of risk taking in the low volatility condition. Inside each data point, the
length of the vertical bar denotes two standard errors of the mean probability of risk taking in the
low volatility condition; the length of the horizontal bar denotes two standard errors of the mean
probability of risk taking in the high volatility condition.
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Panel A: the graph plots, for each volatility condition, the probability of risk taking against the
difference in expected values between the risky lottery and the certain option, pX − C. The
probability of risk taking is computed as the proportion of trials on which subjects choose the risky
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Summary

The hypothesis that decisions are based on noisy internal
representations of the presented data can explain phenomena
that a mere assumption of comparison noise (or more
generally, response noise) cannot

especially when the hypothesis of noisy coding is combined with
the further assumptions of efficient coding and Bayesian
decoding

This doesn’t mean that there may not also be comparison noise

— only that a hypothesis of comparison noise by itself doesn’t
adequately capture the role of cognitive noise in decision making

Study of cognitive noise in other domains may help to improve
economic modeling

Woodford (Columbia) Lecture 1 November 10, 2025 39 / 44



Summary

The hypothesis that decisions are based on noisy internal
representations of the presented data can explain phenomena
that a mere assumption of comparison noise (or more
generally, response noise) cannot

especially when the hypothesis of noisy coding is combined with
the further assumptions of efficient coding and Bayesian
decoding

This doesn’t mean that there may not also be comparison noise

— only that a hypothesis of comparison noise by itself doesn’t
adequately capture the role of cognitive noise in decision making

Study of cognitive noise in other domains may help to improve
economic modeling

Woodford (Columbia) Lecture 1 November 10, 2025 39 / 44



Summary

The hypothesis that decisions are based on noisy internal
representations of the presented data can explain phenomena
that a mere assumption of comparison noise (or more
generally, response noise) cannot

especially when the hypothesis of noisy coding is combined with
the further assumptions of efficient coding and Bayesian
decoding

This doesn’t mean that there may not also be comparison noise

— only that a hypothesis of comparison noise by itself doesn’t
adequately capture the role of cognitive noise in decision making

Study of cognitive noise in other domains may help to improve
economic modeling

Woodford (Columbia) Lecture 1 November 10, 2025 39 / 44



The Remaining Lectures

Lecture 2: Response bias as an optimal adaptation to cognitive
noise

— Enke et al., “Behavioral Attenuation”

Lecture 3: Prospect-theoretic biases in choice under risk

— Khaw et al., “Cognitive Imprecision and Stake-Dependent
Risk Attitudes”

Lecture 4: Cognitive noise in coordination games

— Frydman and Nunnari, “Coordination with Cognitive Noise”
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