Lecture 1: Noisy Cognition and Economic Decision Making

Michael Woodford

Columbia University

A Short Course on Cognitive Imprecision Northwestern University November 10, 2025

The Random Element in Economic Decisions

- Standard theory implies that a given DM's choice should be a perfectly predictable function of the distribution of returns associated with alternative options
 - they should with certainty choose the option that implies the highest expected utility (or at any rate, the distribution of returns that is most preferred under some well-defined ordering)

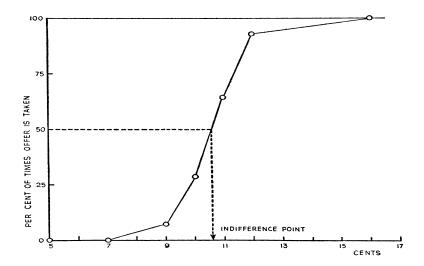
The Random Element in Economic Decisions

- This postulate isn't easily testable in the case of decisions observed "in the wild"
 - hard for an observer to be sure exactly how the possible returns are understood by a given DM, or what their personal preferences may be

The Random Element in Economic Decisions

- This postulate isn't easily testable in the case of decisions observed "in the wild"
 - hard for an observer to be sure exactly how the possible returns are understood by a given DM, or what their personal preferences may be
- But it can be tested in the case of laboratory experiments, in which both possible payoffs and their probabilities are stated by the experimenter, and the same choice problem can be repeated multiple times
 - and there choices are observed to be **random**, though with **probabilities** that vary systematically with the properties of the gambles offered

Mosteller and Nogee (1951)



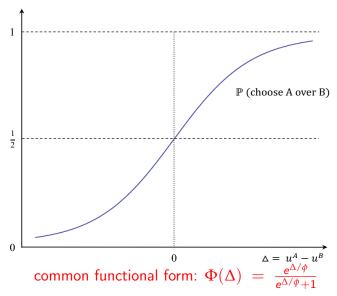
Understanding Randomness of Choice

- A common interpretation of such observations: people have a well-defined valuation for each possible option, which depends only on its features (and hence is invariant across contexts)
 - but instead of choosing the highest-valued option with certainty, the probability of choosing a given option depends on how great the difference in value relative to the alternatives

Understanding Randomness of Choice

- A common interpretation of such observations: people have a well-defined valuation for each possible option, which depends only on its features (and hence is invariant across contexts)
 - but instead of choosing the highest-valued option with certainty, the probability of choosing a given option depends on how great the difference in value relative to the alternatives
- This explains Mosteller and Nogee's method: they expect vonN-M utility to explain when two lotteries are equally valued, as revealed by 50-50 choice frequency

Stochastic Choice From Comparison Noise



Understanding Randomness of Choice

- This kind of model of choice can be justified in terms of an additive random utility model:
 - choices based not on u^A , u^B , but instead on occasion-specific values

$$\tilde{u}^i = u^i + \epsilon^i$$
,

where random term e^i is an independent draw (for each good, and on each occasion) from some distribution F(e)

- the good i that is chosen is the one with the highest value of \tilde{u}^i on that occasion
- the nature of the distribution $F(\varepsilon)$ determines the function $\Phi(\Delta)$ [e.g., probit or logit model]

- Models of this kind can all be viewed as involving only comparison noise
 - models in which noise only enters at the **end** of the choice process, when the (accurately computed) values of the various choice options must be **compared** in order to choose between them

- Models of this kind can all be viewed as involving only comparison noise
 - models in which noise only enters at the **end** of the choice process, when the (accurately computed) values of the various choice options must be **compared** in order to choose between them
- But there is an alternative possible source of randomness in responses: one might suppose that the **features** that define the available options are **corrupted by noise**, before they can be integrated to compute assessments of value

 This would then result in random choice [as a function of the objective features], even if the value estimates (and hence choices) are perfectly optimal, conditional on their being based on noisy representations

- This would then result in random choice [as a function of the objective features], even if the value estimates (and hence choices) are perfectly optimal, conditional on their being based on noisy representations
- A common interpretation of randomness of perceptual judgments
 - early stages of processing of many sensory features are demonstrably random [random firing of cortical neurons can be measured, and can in some cases be shown to explain randomness of judgments: e.g., Newsome et al., 1989]

- This would then result in random choice [as a function of the objective features], even if the value estimates (and hence choices) are perfectly optimal, conditional on their being based on noisy representations
- A common interpretation of randomness of perceptual judgments
 - early stages of processing of many sensory features are demonstrably random [random firing of cortical neurons can be measured, and can in some cases be shown to explain randomness of judgments: e.g., Newsome et al., 1989]
 - yet judgments may be modeled as **optimal**, conditional on noisy sensory data [e.g., signal detection theory, Bayesian models]

- But does this really provide a possible explanation for the randomness of responses in experiments like that of Mosteller and Nogee?
- One may admit that when number information is presented visually, rather than symbolically, this results in errors in perception
 - but in experiments like that of M&N, the monetary amounts are described using **symbols**
 - shouldn't this allow **precise** recognition of the amounts offered?

- In fact, evidence suggests that even when symbolic representations of numbers are presented [e.g., Arabic numerals], these activate an internal representation of the quantity indicated that is imprecise in the same way as with perception of sensory magnitudes (including numerosity) [Dehaene (2011), Grossberg and Repin (2003)]
- This "semantic" representation allows judgments of the approximate magnitudes of symbolically-presented numbers
 - when very rapid judgments must be made [next slide]
 - when information presented symbolically must later be recalled [e.g., Dehaene and Marques (2002)]
 - by patients with brain injuries that impair arithmetic ability [see Dehaene (2011)]

- Example: Dehaene et al. (1990), Experiment 2:
 - subjects are presented with two-digit Arabic numerals [other than 65]
 - asked to press one of two keys to quickly indicate whether the number shown is larger or smaller than 65

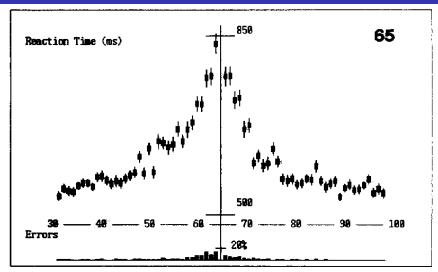
- Example: Dehaene et al. (1990), Experiment 2:
 - subjects are presented with two-digit Arabic numerals [other than 65]
 - asked to press one of two keys to quickly indicate whether the number shown is larger or smaller than 65

• Findings: **slowest** responses (and most **errors**) for numbers **near 65**, faster responses (and fewer errors) the more distant the number from 65, either below or above

Why **response time** is relevant:

In dynamic extension of model of noisy retrieval of information, noisier individual observations ⇒ draw more before decision and decision less accurate

Dehaene, Dupoux and Mehler (1990)



top panel: distribution of response times for each number bottom panel: error rate for each number

- Note: slow response for numbers near 65 NOT simply due to fact that question can't be answered from first digit alone when first digit is 6
 - no discontinuity in response time when move from high 50s to low 60s, or high 60s to low 70s
 - slower response for high 50s than low 50s, for high 40s than low 40s; also for low 70s than high 70s, for low 80s than high 80s

- Note: slow response for numbers near 65 NOT simply due to fact that question can't be answered from first digit alone when first digit is 6
 - no discontinuity in response time when move from high 50s to low 60s, or high 60s to low 70s
 - slower response for high 50s than low 50s, for high 40s than low 40s; also for low 70s than high 70s, for low 80s than high 80s
- Results suggest that presentation of Arabic numeral rapidly calls to mind a semantic representation of the number, as a quantity of a certain size
 - which representation is however **imprecise** (and random), just as with subjective representations of sensory magnitudes

• Evidently, answer can be given more quickly when question can be answered using this quickly-available semantic representation, rather than having to consciously recall arithmetic meaning of numerals and exact order of precise numbers [though of course normal adults can do that, too]

- Evidently, answer can be given more quickly when question can be answered using this quickly-available semantic representation, rather than having to consciously recall arithmetic meaning of numerals and exact order of precise numbers [though of course normal adults can do that, too]
- Possible interpretation of experiments like Mosteller-Nogee:
 perhaps when subjects make intuitive judgments about choice
 between gambles [not resorting to any conscious arithmetic
 calculation], they consider whether the upside possibilities are
 large enough to outweigh the downside risk, using this fuzzy
 semantic representation of the magnitudes mentioned in the
 problem description
 - randomness in the semantic representation then gives rise to randomness in judgments of relative value of two options

Does the Nature of the Noise Matter?

- Yet one might wonder: is there any observationally distinguishable difference between models with
 - noisy evidence about the situation, but a reliable (perhaps optimal) response to the noisy data ["early noise"]

VS.

 reliable recognition of the situation, and computation of the values of presented choices, but a noisy response on basis of that info ["late noise"]?

Does the Nature of the Noise Matter?

Cases where the hypothesis of early noise + optimal decoding has different implications:

• Biases in the estimation of individual features of a choice option, resulting from noisy encoding of the individual features of that option (rather only encoding its overall value), can result in estimates of its overall value that are not simply a function of the true overall value [i.e., the value that would be computed from the true features]

- People are observed in the laboratory to make risk-averse choices even when stakes are quite small
 - yet if one were to explain this as reflecting **diminishing** marginal utility of wealth, one would have to hypothesize such a **sharply decreasing** MUW as to imply extreme risk aversion in the case of **larger** gambles, that we don't see

• Consider, for example, the Mosteller-Nogee data shown above: "indifference" requires $X \approx 10.7$ cents

- Consider, for example, the Mosteller-Nogee data shown above: "indifference" requires $X \approx 10.7$ cents
 - rationalizing this in terms of an ARUM (or "control cost" model), with "true" utility given by EUT, would require U(W) such that

$$U(W_0 + 0.055) - U(W_0) < U(W_0) - U(W_0 - 0.05)$$

- Consider, for example, the Mosteller-Nogee data shown above: "indifference" requires $X \approx 10.7$ cents
 - rationalizing this in terms of an ARUM (or "control cost" model), with "true" utility given by EUT, would require U(W) such that

$$U(W_0 + 0.055) - U(W_0) < U(W_0) - U(W_0 - 0.05)$$

• but this degree of curvature, if holding for all W_0 , would imply that

$$U(W_0 + 1T) - U(W_0) < U(W_0) - U(W_0 - 1),$$

so that the same DM should (more often than not) decline a bet that offers 50 percent chance of winning \$1T, but 50 percent chance of losing \$1

19 / 44

- The behavioral literature typically concludes from this that people **don't** care only about their utility U(W) from overall wealth (integrating gains or losses from the experiment with their other sources of wealth)
 - instead, "narrow bracketing" of the prospective gains/losses from the individual gamble; and "loss aversion" in the consideration of gains and losses in isolation

- The behavioral literature typically concludes from this that people **don't** care only about their utility U(W) from overall wealth (integrating gains or losses from the experiment with their other sources of wealth)
 - instead, "narrow bracketing" of the prospective gains/losses from the individual gamble; and "loss aversion" in the consideration of gains and losses in isolation
- If we instead suppose that decision must be based on a **noisy representation** of the terms of the gamble offered, can explain small-stakes risk aversion under hypothesis of a decision rule that **maximizes average** U(W) across possible decision problems (Khaw *et al.*, 2021)

 Suppose that, as in the Mosteller-Nogee experiment, a DM must choose whether to pay C for a gamble that will pay X with probability 1/2 (but zero otherwise); but suppose that the decision must be made on the basis of noisy retrieved representations of the quantities C, X specified on that trial

- Suppose that, as in the Mosteller-Nogee experiment, a DM must choose whether to pay C for a gamble that will pay X with probability 1/2 (but zero otherwise); but suppose that the decision must be made on the basis of **noisy** retrieved representations of the quantities C, X specified on that trial
- Then a decision rule that is optimal for the DM (that would maximize the average U(W) resulting from decisions) would require acceptance of the gamble if and only if noisy representation \boldsymbol{r} satisfies

$$\frac{1}{2} \mathrm{E}[U(W_0 + X - C) \, | \, \boldsymbol{r}] \, + \, \frac{1}{2} \mathrm{E}[U(W_0 - C) \, | \, \boldsymbol{r}] \, > \, \mathrm{E}[U(W_0) \, | \, \boldsymbol{r}]$$

• If C, X are both small relative to the curvature of U(W), we can use the approximation

$$U(W_0 + \Delta) \approx U(W_0) + U'(W_0) \cdot \Delta$$

to conclude that (an approximately) optimal decision rule will accept the gamble if and only if

$$E[X | r] > 2 \cdot E[C | r],$$

independently of what is known (or can be inferred) about $\,W_{0}\,$

• If C, X are both small relative to the curvature of U(W), we can use the approximation

$$U(W_0 + \Delta) \approx U(W_0) + U'(W_0) \cdot \Delta$$

to conclude that (an approximately) optimal decision rule will accept the gamble if and only if

$$E[X | r] > 2 \cdot E[C | r],$$

independently of what is known (or can be inferred) about W_0

 Thus decision depends only on inference about parameters of this gamble — as if "narrow bracketing," though decision rule actually optimized for an objective that assumes payoffs only matter due to their effect on overall lifetime budget

• The location of the "indifference point" can also imply **risk** aversion, despite stakes being very small — but not because U'(W) is assumed to be sharply increasing

Noisy Representation of a Gamble

- The location of the "indifference point" can also imply **risk** aversion, despite stakes being very small but not because U'(W) is assumed to be sharply increasing
- Only need for the condition

$$E[X | r] > 2 \cdot E[C | r],$$

to be satisfied with probability less than 1/2, even when X > 2C (though not larger by a factor much greater than 2)

— this can happen, if "regression to the mean" shrinks the estimated magnitude of the larger quantity X by a larger factor, on average [to discuss further in Lecture 2]

Noisy-coding theory implies that manipulations that change the degree of coding precision should change estimation bias

- Noisy-coding theory implies that manipulations that change the degree of coding precision should change estimation bias
 - for example, varying time pressure
 - if internal evidence is a stream of noisy signals [as for example in the DDM], then less time for collecting additional signals should mean **noisier cumulative evidence**
 - Bayesian decoding of the noisier internal representation can result not just in **more variable** estimates, but in larger **average bias** in valuations

- Noisy-coding theory implies that manipulations that change the degree of coding precision should change estimation bias
 - for example, varying time pressure
 - if internal evidence is a stream of noisy signals [as for example in the DDM], then less time for collecting additional signals should mean **noisier cumulative evidence**
 - Bayesian decoding of the noisier internal representation can result not just in **more variable** estimates, but in larger **average bias** in valuations
 - Polania *et al.* (2019) find that increased time pressure changes average ratings of food items
 - in a way consistent with Bayesian decoding of noisy internal representation of items' values

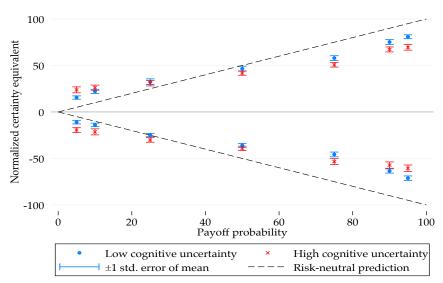
 Other methods of manipulating encoding noise can similarly influence valuation biases

- Other methods of manipulating encoding noise can similarly influence valuation biases
 - Enke and Graeber (2023) elicit "certainty equivalent" values for simple lotteries [an amount X is paid with probability p; otherwise, payoff is zero]
 - look at how bias in valuation [CE/X different on average from p] varies with p
 - finding: CE/X > p for small p, while CE/x < p for large p, regardless of sign of X [replicating findings of Tversky and Kahneman, 1992]

- As discussed further in Lecture 3, this can be interpreted as consequence of Bayesian decoding of a noisy internal representation of p
 - internal noise ["cognitive uncertainty"] \Rightarrow estimates of p biased toward the **prior mean** [$\bar{p} = 0.5$ in symm. case]

- As discussed further in Lecture 3, this can be interpreted as consequence of Bayesian decoding of a noisy internal representation of p
 - internal noise ["cognitive uncertainty"] \Rightarrow estimates of p biased toward the **prior mean** [$\bar{p} = 0.5$ in symm. case]
- Enke and Graeber (2023) manipulate the degree of noise in the internal representation by presenting the payoff probability in a more complex form [compound lottery, rather than simply stating the implied probability p of the non-zero payoff]
 - and show that increasing noise in this way leads to **increased bias** in the elicited certainty equivalents

Enke and Graeber (2023)



cognitive uncertainty increased by more complex presentation

Noisy-coding hypothesis can also explain another type of sensitivity of choice to the context in which options are encountered: more random choice between two given options, when they are drawn from a wider range of possibilities (presented on other trials)

- Noisy-coding hypothesis can also explain another type of sensitivity of choice to the context in which options are encountered: more random choice between two given options, when they are drawn from a wider range of possibilities (presented on other trials)
 - this is another example of sensitivity of choice to the DM's prior about what the data are likely to be
 - but not because of how the prior is used in interpreting noisy evidence; instead, the precision of the encoding can vary with the prior (and hence across contexts)

- Noisy-coding hypothesis can also explain another type of sensitivity of choice to the context in which options are encountered: more random choice between two given options, when they are drawn from a wider range of possibilities (presented on other trials)
 - this is another example of sensitivity of choice to the DM's prior about what the data are likely to be
 - but not because of how the prior is used in interpreting noisy evidence; instead, the precision of the encoding can vary with the prior (and hence across contexts)
 - predicted by theories of "efficient coding"

Efficient Coding

- Idea: the neural system used to produce internal representations of particular quantities has only a finite capacity to represent different amounts in sufficiently distinguishable ways
 - like the finite *capacity* of a communications channel, in Shannon's theory

Efficient Coding

- Idea: the neural system used to produce internal representations of particular quantities has only a finite capacity to represent different amounts in sufficiently distinguishable ways
- Efficient coding: the hypothesis that external stimuli are mapped into the limited variety of possible internal states in such a way as to make decisions as accurate as possible
 - worse discrimination between some states may be accepted, as the price of allowing sharper discrimination between other states, that it matters more to be able to distinguish

Efficient Coding

- Idea: the neural system used to produce internal representations of particular quantities has only a finite capacity to represent different amounts in sufficiently distinguishable ways
- Efficient coding: the hypothesis that external stimuli are mapped into the limited variety of possible internal states in such a way as to make decisions as accurate as possible
 - worse discrimination between some states may be accepted, as the price of allowing sharper discrimination between other states, that it matters more to be able to distinguish
- This implies that the encoding scheme should depend on the prior (Payzan-LeNestour and Woodford, 2022)

• Implication of a variety of different efficient coding theories: range normalization

- Implication of a variety of different efficient coding theories:
 range normalization
- Idea: the accuracy of discrimination between any two magnitudes will be worse when these two magnitudes are drawn from a prior distribution with a wider range

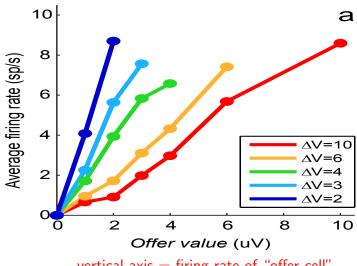
- Implication of a variety of different efficient coding theories:
 range normalization
- Idea: the accuracy of discrimination between any two magnitudes will be worse when these two magnitudes are drawn from a prior distribution with a wider range
 - the larger range of objective magnitudes must be mapped into the same range of possible internal representations
 - hence the two magnitudes will be closer together in "psychological space" when the objective difference between them is a smaller fraction of the overall range
 - making the encoding noise more significant relative to the degree of difference in their internal representations

- An illustration, where the internal representations can actually be observed:
 - Padoa-Schioppa (2009) measures the internal representation of the values of different choice options, by the rate of firing of certain cells in the macaque OFC ["offer cells"], when monkeys choose between offers of different quantities of two types of juice

- An illustration, where the internal representations can actually be observed:
 - Padoa-Schioppa (2009) measures the internal representation of the values of different choice options, by the rate of firing of certain cells in the macaque OFC ["offer cells"], when monkeys choose between offers of different quantities of two types of juice
 - the firing rate is higher when the quantity of apple juice offered is higher [this is what identifies the cells as "offer cells"]

- An illustration, where the internal representations can actually be observed:
 - Padoa-Schioppa (2009) measures the internal representation of the values of different choice options, by the rate of firing of certain cells in the macaque OFC ["offer cells"], when monkeys choose between offers of different quantities of two types of juice
 - the firing rate is higher when the quantity of apple juice offered is higher [this is what identifies the cells as "offer cells"]
 - but the firing rate associated with a given quantity of juice is smaller, when the range of quantities of juice that occur on different trials [in that experimental session] is greater

Padoa-Schioppa (2009)



vertical axis = firing rate of "offer cell"

- The fact that two drops of juice are differently encoded when 4 is the upper bound, than when 10 is the upper bound, doesn't mean that they are valued more (on average) in the former case
 - the "decoding" of the internal representation seems to adjust to the range in an efficient way as well (Rustichini et al., 2017)

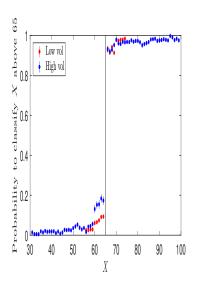
- The fact that two drops of juice are differently encoded when 4 is the upper bound, than when 10 is the upper bound, doesn't mean that they are valued more (on average) in the former case
 - the "decoding" of the internal representation seems to adjust to the range in an efficient way as well (Rustichini et al., 2017)
- But the change in encoding when the range is 10 does mean that two drops are not as accurately distinguished from four drops, as is the case when the range is 4
 - resulting in less predictable choices

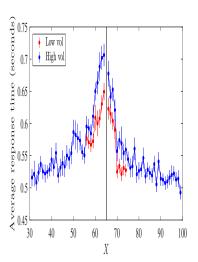
• Frydman and Jin (2022) show that the same seems to be true of the internal representation of numerical quantities in humans

- Frydman and Jin (2022) show that the same seems to be true of the internal representation of numerical quantities in humans
 - task: a two-digit Arabic numeral is presented, and the subject must (rapidly) say whether it is greater or less than 65
 - replicating the study of Dehaene *et al.* (1990), discussed above; but with numbers drawn from **two different distributions**

- Frydman and Jin (2022) show that the same seems to be true of the internal representation of numerical quantities in humans
 - task: a two-digit Arabic numeral is presented, and the subject must (rapidly) say whether it is greater or less than 65
 - replicating the study of Dehaene *et al.* (1990), discussed above; but with numbers drawn from **two different distributions**
 - consequence: more mistakes (and slower responses) when the number presented is closer to 65
 - but for numbers near 65, responses are slower (and yet more mistakes) when the numbers are drawn from a wider range

Number Comparison [Frydman and Jin (2022)]





 This suggests a model of noisy encoding of numerical magnitudes in which

$$r_X \sim p(r_X | m(X))$$

where $p(r_x | m)$ is the same across contexts, but the mapping m(X) depends on the distribution of values of X used

- m(X) must adjust so that m has the same bounded range, regardless of the range over which X varies
- ullet and similarly for the internal representation of the certain alternative C

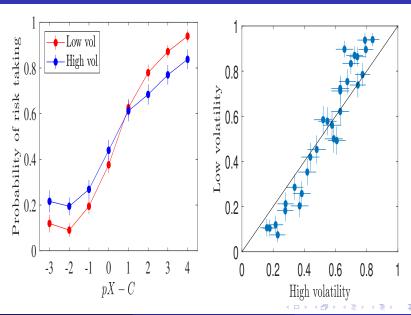
 This suggests a model of noisy encoding of numerical magnitudes in which

$$r_X \sim p(r_X | m(X))$$

where $p(r_x | m)$ is the same across contexts, but the mapping m(X) depends on the distribution of values of X used

- m(X) must adjust so that m has the same bounded range, regardless of the range over which X varies
- ullet and similarly for the internal representation of the certain alternative C
- Consequence: larger range of variation in *X* and *C* should result in noisier choice between lotteries

Lottery Choice [Frydman and Jin (2022)]



Summary

- The hypothesis that decisions are based on noisy internal representations of the presented data can explain phenomena that a mere assumption of comparison noise (or more generally, response noise) cannot
 - especially when the hypothesis of noisy coding is combined with the further assumptions of efficient coding and Bayesian decoding

Summary

- The hypothesis that decisions are based on noisy internal representations of the presented data can explain phenomena that a mere assumption of comparison noise (or more generally, response noise) cannot
 - especially when the hypothesis of noisy coding is combined with the further assumptions of efficient coding and Bayesian decoding
- This doesn't mean that there may not also be comparison noise
 - only that a hypothesis of comparison noise **by itself** doesn't adequately capture the role of cognitive noise in decision making

Summary

- The hypothesis that decisions are based on noisy internal representations of the presented data can explain phenomena that a mere assumption of comparison noise (or more generally, response noise) cannot
 - especially when the hypothesis of noisy coding is combined with the further assumptions of efficient coding and Bayesian decoding
- This doesn't mean that there may not also be comparison noise
 - only that a hypothesis of comparison noise **by itself** doesn't adequately capture the role of cognitive noise in decision making
- Study of cognitive noise in other domains may help to improve economic modeling

The Remaining Lectures

- Lecture 2: Response bias as an optimal adaptation to cognitive noise
 - Enke et al., "Behavioral Attenuation"

The Remaining Lectures

- Lecture 2: Response bias as an optimal adaptation to cognitive noise
 - Enke et al., "Behavioral Attenuation"
- Lecture 3: Prospect-theoretic biases in choice under risk
 - Khaw *et al.*, "Cognitive Imprecision and Stake-Dependent Risk Attitudes"

The Remaining Lectures

- Lecture 2: Response bias as an optimal adaptation to cognitive noise
 - Enke et al., "Behavioral Attenuation"
- Lecture 3: Prospect-theoretic biases in choice under risk
 - Khaw et al., "Cognitive Imprecision and Stake-Dependent Risk Attitudes"
- Lecture 4: Cognitive noise in coordination games
 - Frydman and Nunnari, "Coordination with Cognitive Noise"

References

Dehaene, S., The Number Sense: How the Mind Creates Mathematics, Oxford University Press, 2d ed., 2011.

Dehaene, S., E. Dupoux, and J. Mehler, "Is Numerical Comparison Digital? Analogical and Symbolic Effects in Two-Digit Number Comparison," *J. Experimental Psychology: Human Perception and Performance* 16: 626-641 (1990).

Dehaene, S., and J.F. Marques, "Cognitive Euroscience: Scalar Variability in Price Estimation and the Cognitive Consequences of Switching to the Euro," *Quarterly J. Experimental Psychology* 55: 705-731 (2002).

Enke, B., and T. Graeber, "Cognitive Uncertainty," *Quarterly J. Economics* 138: 2021-2067 (2023).

References (p. 2)

Frydman, C., and L. Jin, "Efficient Coding and Risky Choice," *Quarterly J. Econ.* 137: 161-213 (2022).

Grossberg, S., and D.V. Repin, "A Neural Model of How the Brain Represents and Compares Multi-Digit Numbers: Spatial and Categorical Processes," *Neural Networks* 16: 1107–1140 (2003).

Khaw, M.W., Z. Li, and M. Woodford, "Cognitive Imprecision and Stake-Dependent Risk Attitudes," *Rev. Econ. Studies* 88: 1979-2013 (2021).

Luce, R.D., *Individual Choice Behavior: A Theoretical Analysis*, Wiley, 1959.

References (p. 3)

Mosteller, F., and P. Nogee, "An Experimental Measurement of Utility," *J. Political Economy* 59: 371-404 (1951).

Newsome, W.T., K.H. Britten, and J.A. Movshon, "Neuronal Correlates of a Perceptual Decision," *Nature* 341: 52-54 (1989).

Padoa-Schioppa, C., "Range-Adapting Representation of Economic Value in the Orbitofrontal Cortex," *J. Neuroscience* 29: 14004-14014 (2009).

Payzan-LeNestour, E., and M. Woodford, "Outlier Blindness: A Neurobiological Foundation for Neglect of Financial Risk," *Journal of Financial Economics* 143: 1316-1343 (2022).

References (p. 4)

Polania, R., C.C. Ruff, and M. Woodford, "Efficient Coding of Subjective Value," *Nature Neuroscience* 22: 134-142 (2019).

Rabin, Matthew, "Risk Aversion and Expected Utility Theory: A Calibration Theorem," *Econometrica* 68: 1281-1292 (2000).

Rustichini, A., K.E. Conen, X. Cai, and C. Padoa-Schioppa, "Optimal Coding and Neuronal Adaptation in Economic Decisions," *Nature Communications* 8: 1208 (2017).

Tversky, A., and D. Kahneman, "Advances in Prospect Theory: Cumulative Representation of Uncertainty," *J. Risk and Uncertainty* 5: 297-323 (1992).