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Inference from Noisy Representations

@ We have discussed the idea that randomness in observed choices
may reflect application of an optimal decision criterion, but
taking as input a noisy representation of the decision problem
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Inference from Noisy Representations

@ We have discussed the idea that randomness in observed choices
may reflect application of an optimal decision criterion, but
taking as input a noisy representation of the decision problem

@ Optimal inference from noisy representations will generally imply
estimated values that are not even on average equal to a
correct valuation (based on the objective characteristics, rather
than their noisy representation)

— hence cognitive noise of this kind can be a source of
systematic bias in choices
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Inference from Noisy Representations

@ We have discussed the idea that randomness in observed choices
may reflect application of an optimal decision criterion, but
taking as input a noisy representation of the decision problem

@ Optimal inference from noisy representations will generally imply
estimated values that are not even on average equal to a
correct valuation (based on the objective characteristics, rather
than their noisy representation)

— hence cognitive noise of this kind can be a source of
systematic bias in choices

@ Biases of this kind are clearly seen in perceptual domains,
where it is clear what an objectively correct judgment would be

Woodford (Columbia) Lecture 2 November 12, 2025 2/59



Regression Bias

@ In the case of estimates of physical magnitudes — judgments
about the size of something that may be larger or smaller — it is
commonly found that on average “people tend to
underestimate high values ... and to overestimate low ones”
(“conservatism”: Hilbert, 2012; Petzscner et al., 2015, call
this “regression bias”)
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Regression Bias

@ In the case of estimates of physical magnitudes — judgments
about the size of something that may be larger or smaller — it is
commonly found that on average “people tend to
underestimate high values ... and to overestimate low ones”
(“conservatism”: Hilbert, 2012; Petzscner et al., 2015, call
this “regression bias”)

@ An early example: “Vierordt’s Law”: short time intervals tend
to be over-estimated, while long time intervals tend to
under-estimated

— classic experiment [Vierordt, 1868]: subject hears two
successive taps, then must try to reproduce the same time
interval themselves
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Context-Dependent Bias

@ However, the distribution of estimates associated with a given
stimulus doesn’t depend only on the objective properties of that

individual stimulus

— it also depends on the context in which the stimulus appears
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Context-Dependent Bias

@ However, the distribution of estimates associated with a given
stimulus doesn’t depend only on the objective properties of that
individual stimulus

— it also depends on the context in which the stimulus appears
@ Jazayeri and Shadlen (2010): plot range of production intervals

associated with a given presented interval, on days on which the
mean interval previously presented is different

— the three different “prior conditions” shown in their figure
[prior mean is shown by dashed horizontal line for each
condition]
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Estimated Time Intervals (Jazayeri and Shadlen, 2010)
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Central Tendency of Judgment

@ Petzschner et al. (2015) note that this kind of pattern is
observed in a large variety of different cases of estimation of

an extensive magnitude:

— estimation of distances, estimation of angles, estimation of
sizes of objects, etc.
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Central Tendency of Judgment

@ Petzschner et al. (2015) note that this kind of pattern is
observed in a large variety of different cases of estimation of

an extensive magnitude:

— estimation of distances, estimation of angles, estimation of
sizes of objects, etc.

@ Hollingworth (1910) calls this the “central tendency of
judgment”
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Central Tendency of Judgment
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A Bayesian Explanation

@ The pervasiveness of this kind of bias (and the “central
tendency” in particular) can be explained as a consequence of
optimal adaptation to the presence of noise in the internal
evidence ( “sensory evidence") upon which the subject’s
estimates are based
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A Bayesian Explanation

@ The pervasiveness of this kind of bias (and the “central
tendency” in particular) can be explained as a consequence of
optimal adaptation to the presence of noise in the internal
evidence ( “sensory evidence") upon which the subject’s
estimates are based

@ A simple model: suppose that objective magnitude X has a
noisy internal representation r, an independent draw [each time
a stimulus is presented| from distribution

r ~ N(X, v?)

2

where [for now!] the noise variance v* is independent of X

Woodford (Columbia) Lecture 2 November 12, 2025 9/59



A Bayesian Explanation

@ The pervasiveness of this kind of bias (and the “central
tendency” in particular) can be explained as a consequence of
optimal adaptation to the presence of noise in the internal
evidence ( “sensory evidence") upon which the subject’s
estimates are based

@ A simple model: suppose that objective magnitude X has a
noisy internal representation r, an independent draw [each time
a stimulus is presented| from distribution

r ~ N(X, v?)

2

where [for now!] the noise variance v* is independent of X

@ What inference about the magnitude X can be drawn from
access to the noisy representation r?
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A Bayesian Explanation

@ Suppose further that in a given environment, the values of X
that are encountered are themselves independent draws [each
time a stimulus is presented] from a prior distribution that is also
Gaussian

X ~ N(u, o?)
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A Bayesian Explanation

@ Suppose further that in a given environment, the values of X
that are encountered are themselves independent draws [each
time a stimulus is presented] from a prior distribution that is also
Gaussian

X ~ N(u, o?)

@ Then in this environment, the joint distribution of (X, r) will be
bivariate Gaussian, and the posterior distribution for X given
an observation r is of the form

X|r ~ N(a(r), &%)

2
. o
where  fi(r) = u + B(r—p), B= R <1
. 22
(72 = m - (1—ﬁ)02
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A Bayesian Explanation

@ What would an optimal response rule for subject be?

— perceptual experiments of this kind typically not incentivized,
so subjects’ objectives unclear; but if for example response rule is
adapted to minimize MSE, response will be

X(r) = EX|r] = p+ p(r—p)
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A Bayesian Explanation

@ What would an optimal response rule for subject be?

— perceptual experiments of this kind typically not incentivized,
so subjects’ objectives unclear; but if for example response rule is
adapted to minimize MSE, response will be

X(r) = EX|r] = p+ p(r—p)

@ This predicts random responses, conditional on objective
stimulus:
var[X |X] = B?var[r|X] = B2

— and mean response will be biased:

E[X|X] = (1—p)u + BE[r|X] = (1—p)u + X
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Cognitive Noise and Estimation Bias

EX|X] = u+B(X—p)

@ Since B < 1, this implies regression bias:
E[X|X] > X forall small enough X (X < )
E[X|X] < X forall large enough X (X > u)
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Cognitive Noise and Estimation Bias

EX|X] = u+B(X—p)

@ Since B < 1, this implies regression bias:
E[X|X] > X forall small enough X (X < )
E[X|X] < X forall large enough X (X > u)

@ And if the ranges of stimuli encountered in different contexts
differ, an optimally adapted decision rule for each context should
result in a different mapping E[X | X]

— the “crossover point” should always be where X = y, the
prior mean for that context, in accordance with Hollingsworth's
“central tendency of judgment”
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Cognitive Noise and Estimation Bias

e Fixing the statistics of the environment (, 02), the model also
makes predictions about how bias should change if v is higher
in some contexts than others:

2

larger v© = smaller B = stronger regression bias
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Cognitive Noise and Estimation Bias

e Fixing the statistics of the environment (, 02), the model also
makes predictions about how bias should change if v is higher
in some contexts than others:

larger 12 = smaller B = stronger regression bias

@ And indeed regression bias is stronger in contexts where sensory
evidence is noisier:

e bias in estimated speed of a moving visual image greater when
image is presented with lower visual contrast (Stocker and
Simoncelli, 2006)
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Cognitive Noise and Estimation Bias

@ Another example:

e when subjects must compare the sizes of two stimuli presented
sequentially, they over-estimate the relative size of the first
stimulus when both are relatively small, but under-estimate
the size of the first stimulus when both are relatively large

— consistent with Bayesian model of regression bias if
information held longer in working memory is retrieved with
greater noise (Ashourian and Loewenstein, 2011)
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Cognitive Noise and Estimation Bias

@ Another example:

e when subjects must compare the sizes of two stimuli presented
sequentially, they over-estimate the relative size of the first
stimulus when both are relatively small, but under-estimate
the size of the first stimulus when both are relatively large

— consistent with Bayesian model of regression bias if
information held longer in working memory is retrieved with
greater noise (Ashourian and Loewenstein, 2011)

@ Additional kind of causal manipulation to increase cognitive
noise: central-tendency effect increased by increasing
“cognitive load” (Allred et al., 2016)
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Imprecision in Number Representation

@ But do such biases in estimation of physical magnitudes on
the basis of sensory evidence matter for economic decisions?

@ Recall from Lecture 1: there is reason to believe that numerical
information is also represented imprecisely in the brain
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Imprecision in Number Representation

@ But do such biases in estimation of physical magnitudes on
the basis of sensory evidence matter for economic decisions?

@ Recall from Lecture 1: there is reason to believe that numerical
information is also represented imprecisely in the brain

@ Much of what we know about imprecision in number
representation comes from studies of the accuracy of judgments
about the numerosity of visual arrays
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Imprecision in Number Representation

@ For example, the precision of estimates of numerosity has been
studied experimentally, at least since Jevons (1871)
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Imprecision in Number Representation

@ For example, the precision of estimates of numerosity has been
studied experimentally, at least since Jevons (1871)

@ These estimates also commonly exhibit regression bias:
over-estimation of small numbers, under-estimation of larger
ones

— as well as the central tendency of judgment
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Numerosity Estimation [from Anobile et al. (2012)]
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Imprecision in Number Representation

@ The degree of regression bias also seems to be higher when
internal representation of numerosity is noisier

Woodford (Columbia) Lecture 2 November 12, 2025 18 /59



Imprecision in Number Representation

@ The degree of regression bias also seems to be higher when
internal representation of numerosity is noisier

@ Xiang et al. (2021) show this in two ways:

e sort experimental trials according to degree of uncertainty
about the number expressed by the subject

o seek to increase cognitive noise by allowing less time
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Imprecision in Number Representation

@ The degree of regression bias also seems to be higher when
internal representation of numerosity is noisier

@ Xiang et al. (2021) show this in two ways:

e sort experimental trials according to degree of uncertainty
about the number expressed by the subject

o seek to increase cognitive noise by allowing less time

@ Both greater reported uncertainty (for whatever reason) and less
time are associated with

e more variable responses

e stronger regression bias
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“Behavioral Attenuation”

@ Similar biases are also observed in more complex decisions, that
seem to require reasoning
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“Behavioral Attenuation”

@ Similar biases are also observed in more complex decisions, that
seem to require reasoning

@ Enke et al. (2025) document the ubiquity of a pattern that they
call behavioral attenuation across a wide range of decision
problems:

o insufficient responsiveness of DM'’s decision to variation in
parameters of the problem, relative to an optimal decision
— as with “regression bias” in perceptual domains

e moreover, the elasticity of decisions w.r.t. parameter variation is
decreased when there is greater uncertainty about best
decision
— as in the Xiang et al. study of numerosity estimation

Woodford (Columbia) Lecture 2 November 12, 2025 19 /59



“Behavioral Attenuation”

@ Found both in

e pure calculation tasks (statistical inference, optimization),
where there is an objectively correct answer (as with the
perceptual tasks above), and in

o preferential choice tasks (effort supply, saving, etc.), where
the experimenter doesn't know what subjects’ preferences are

@ In latter case, can nonetheless observe the signature of this
effect when responses are less elastic in the case of greater
uncertainty
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“Recall” Task (Stock Valuation)

@ Example of a calculation task [“Recall” task|: subjects must
estimate the value (in dollars) of a particular (fictitious) stock,
on the basis of how many positive or negative news items there
have been about the company

e all news items are simply “positive” or “negative” (only sign
matters)

o the signs of all the news items are displayed on the screen

o the subject is told the formula for converting news into implied
dollar value — so task is just a calculation using information on
the screen
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“Recall” Task: Decision Screen

Reminder: Stock price (in $) = 100 + r of iti news — ni ber of negati news

In this round:
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&
@
@
@
@
@
@
@

What do you think is the stock price of this company? $10

How certain are you that the stock price is actually somewhere between $9 and $117
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“Recall” Task: Behavioral Attenuation
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“Allocation” Task (Consumer Demand)

@ Another seemingly “economic” task that is actually a pure
computation: subjects must decide how to allocate their budget
between purchases of two goods, given their prices

e subject is told the utility function (both a formula and a graph)

e their monetary reward is proportional to the “utility” obtained
— they don't actually consume the items that they choose to
“buy”
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“Allocation” Task: Behavioral Attenuation

CMA
Budget allocation

S A .

— -

o _| e
% [e) e - %
£ -7

. X 5

3 o _| ."% <2
k= © ’./
= .
° -
o .7
o o _] E./'
2 ~ =€ .7
< .7
T 2 e
x g - g -

o Phd e LowCU © High CU

T T T T T 1
(0] 20 40 60 80 100

Optimal relative product demand

Woodford (Columbia) Lecture 2 November 12, 2025 25 /59



Preferential Tasks

@ Other tasks involve choices where the subject’s reward will
depend on their own preferences:

o “Effort supply” task: subject decides how many tasks to
complete, given the wage (piece rate) offered

e “Saving” task: subject decides how much of an endowment to

“save,” given the interest factor by which money will be
multiplied if payment is taken later
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“Effort Supply” Task: Behavioral Attenuation
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“Saving” Task: Behavioral Attenuation
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Inhomogeneity in Cognitive Precision

@ Enke et al. show that variations in subjective uncertainty co-vary
with the degree of behavioral attenuation, not just across
subjects or for other reasons orthogonal to the nature of the
decision problem (e.g., variation across trials in the degree of
distraction or fatigue)

— but also as functions of the parameter values defining the
particular decision problem (for a given type of problem)

— different ranges of parameter values result in different degrees
of subjective uncertainty, and this is associated with
correspondingly different elasticities of behavioral response
to parameter variation when the parameters are in different
ranges

Woodford (Columbia) Lecture 2 November 12, 2025 29 /59



Inhomogeneity in Cognitive Precision

@ Enke et al. further propose a general regularity about how
cognitive uncertainty (and hence behavioral elasticity) varies
with parameter values: CU increases the greater the distance

from any “simple points”

— special parameter values for which the decision simplifies
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Inhomogeneity in Cognitive Precision

@ Enke et al. further propose a general regularity about how
cognitive uncertainty (and hence behavioral elasticity) varies
with parameter values: CU increases the greater the distance
from any “simple points”

— special parameter values for which the decision simplifies

@ In many cases, the “simple point” will be a zero value (e.g., a
zero wage in “effort supply” task)

— in this case, the prediction of declining behavioral elasticity as
a parameter increases away from zero coincides with the familiar
idea of “diminishing marginal sensitivity” (Kahneman and
Tversky, 1979)
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“Effort Supply” Task: Diminishing Sensitivity
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Inhomogeneity in Cognitive Precision

@ Nonlinear response distortion of this kind is what is predicted by
a Bayesian model of optimal decision making in the presence of
cognitive noise, if the degree of noise is inhomogeneous [unlike
what was assumed in linear-Gaussian example above]
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Inhomogeneity in Cognitive Precision

@ Nonlinear response distortion of this kind is what is predicted by
a Bayesian model of optimal decision making in the presence of
cognitive noise, if the degree of noise is inhomogeneous [unlike
what was assumed in linear-Gaussian example above]

@ And it's familiar in the study of imprecise perceptual judgments
that the size of the difference in a physical stimulus magnitude
required for two stimuli to be discriminated with a given
accuracy is not constant over the stimulus space

— famously, “Weber’s Law” asserts that the amount by which
a second magnitude (length, weight, ...) must be greater for a
given degree of discriminability grows in proportion to the first
magnitude
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Imprecise Number Representation

@ Imprecise judgments of numerosity are often argued to be like
this

— leading authors like Dehaene (2011) to argue that numbers
are subjectively represented on a logarithmic “mental number
line”
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Numerosity Discrimination
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Numerosity Estimation
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Imprecise Number Representation

@ This kind of variability in the precision of number representation
can be captured by the hypothesis that the size of a number
X > 0 is a represented by a random quantity r, drawn from a
distribution
re ~ N(logX, v?)

— then the degree of overlap between the distributions of

internal representations of two numbers X1, X5 will be a
decreasing function of |log(X2/X1)]
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Imprecise Number Representation

@ This kind of variability in the precision of number representation
can be captured by the hypothesis that the size of a number
X > 0 is a represented by a random quantity r, drawn from a
distribution
re ~ N(logX, v?)

— then the degree of overlap between the distributions of
internal representations of two numbers X1, X5 will be a
decreasing function of |log(X2/X1)]

@ But this kind of inhomogeneity in the precision of number
representation also has implications for the kind of bias should
be observed in numerosity estimates, if the response rule is
optimally adapted to the nature of the noisy representation
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Imprecise Number Representation

@ Suppose that the prior distribution over numerosities to which
the response rule is adapted is log-normal:

log X ~ N(p,w?)
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Imprecise Number Representation

@ Suppose that the prior distribution over numerosities to which
the response rule is adapted is log-normal:

log X ~ N(p,w?)

@ Then the posterior distribution for X, conditional on a given
representation ry, will also be log-normal,

log X |re ~ N(fi(ry), &)

and the posterior mean (minimum-MSE estimate of X) X will
be given by

N 1
X = exp(fi(r) + Ed)z)
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Imprecise Number Representation

o This provides a model of the distribution of estimates X
associated with a given true numerosity X, that should be
log-normal with conditional moments

m(X) = E[X|X] = AXP,  var[X|X] = BE[X|X]?
where A, B > 0 are constants, and
2
:B —

[see slides at end for details]

o

— < 1
02 +v2
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Imprecise Number Representation

o This provides a model of the distribution of estimates X
associated with a given true numerosity X, that should be
log-normal with conditional moments

m(X) = E[X|X] = AXP,  var[X|X] = BE[X|X]?
where A, B > 0 are constants, and
2
:B —

[see slides at end for details]

o

— < 1
02 +v2

@ The model implies that dm(X) /90X will be decreasing the
farther one gets from the “simple point” X = 0, as is indeed
observed in experimental data for numerosity estimation
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Implications for Behavioral Biases

@ This model of imprecise assessment of the size of a numerical
quantity provides an explanation for small-stakes risk aversion
(Khaw et al., 2021)
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Implications for Behavioral Biases

@ This model of imprecise assessment of the size of a numerical
quantity provides an explanation for small-stakes risk aversion
(Khaw et al., 2021)

o in Lecture 1, we proposed a model in which we would obtain an
“indifference point” indicating risk-aversion if and only if the
noisy representations of monetary payoffs X and C implied that

E[X|r] > 2-E[C|r].

with probability less than 1/2, even for values of X/C
modestly greater than 2
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Implications for Behavioral Biases

@ This model of imprecise assessment of the size of a numerical
quantity provides an explanation for small-stakes risk aversion
(Khaw et al., 2021)

e in Lecture 1, we proposed a model in which we would obtain an
“indifference point” indicating risk-aversion if and only if the
noisy representations of monetary payoffs X and C implied that

E[X|r] > 2-E[C|r],

with probability less than 1/2, even for values of X/C
modestly greater than 2

e we now have a model of noisy coding where that will be true:
suppose that each payoff Q; = X, C has a noisy representation
ri, a conditionally independent draw from

ri ~ N(log Q;, v?)
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Implications for Behavioral Biases

@ Then if there is also a (common) independent log-normal prior
for each of these quantities, we will have

E[Qi|r] = E[Qi|ri] = exp(a+pri)
= AQ,'?C,'

where ¢; is an independent log-normal multiplicative error term
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Implications for Behavioral Biases

@ Then if there is also a (common) independent log-normal prior
for each of these quantities, we will have

E[Qi|r] = E[Qi|ri] = exp(a+pri)
= AQ,ﬁCi

where ¢; is an independent log-normal multiplicative error term

@ So DM chooses the risky gamble more often than not
(conditional on X, C) if and only if

%U(X) > u(C)
where we define u(Q) = E[O Q] = AQP
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Implications for Behavioral Biases

1
§u(X) > u(C)

@ The modal choice is determined as if the outcome of the
gamble is considered in isolation from the DM's other sources of
wealth [“narrow bracketing”|, and payoffs are valued in
accordance with a strictly concave vonN-M utility function
[or PT “value function”]

— even though the decision rule is actually optimized to
maximize the expected total financial wealth of the DM [no
narrow bracketing, no actual risk aversion for gambles of this
size|
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Another Kind of Inhomogeneity in Precision

@ There can also be multiple “simple points”, as in the “recall”
task of Enke et al.:

o both the case of all good news and the case of all bad news
are cases that can be easily distinguished from nearby cases

— leading to repulsion from both points

Woodford (Columbia) Lecture 2 November 12, 2025 42 /59



“Recall” Task: Repulsion from Both Ends
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Another Kind of Inhomogeneity in Precision

@ There can also be multiple “simple points”, as in the “recall”
task of Enke et al.:

e both the case of all good news and the case of all bad news
are cases that can be easily distinguished from nearby cases

— leading to repulsion from both points

@ And the special character of these points seems more clearly to
relate to the precision with which the evidence is represented,
rather than simplicity of solution of the arithmetic calculation
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Another Kind of Inhomogeneity in Precision

@ In fact, a similar phenomenon is common in purely perceptual
estimation tasks

— when subjects have to estimate the relative proportion of
two extensive magnitudes: fraction of dots in an array that are
of a particular color, fraction of letters in a sequence that have
been As, etc. [see Hollands and Dyre (2000)]
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Bias in Judged Proportions

Erlick (1964) Varey et al. (1990) Nakajima (1987)
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[figure from Hollands and Dyre (2000)]
horizontal axis = true proportion
note similar “inverse-S shaped” curve in each case
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Another Kind of Inhomogeneity in Precision

@ In fact, a similar phenomenon is common in purely perceptual
estimation tasks

— when subjects have to estimate the relative proportion of
two extensive magnitudes: fraction of dots in an array that are
of a particular color, fraction of letters in a sequence that have
been As, etc. [see Hollands and Dyre (2000)]

@ This suggests that the pattern in the “recall” task is mainly
about imprecision in recognition of which fraction of the
news is good rather than bad, rather than imprecision in the
calculations required by the formula
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Another Kind of Inhomogeneity in Precision

@ The “inverse-S shaped” pattern of biases can also be explained
as optimal adaptation to noise in the internal representation
of the relative proportions

— under the hypothesis that the representation of proportions is
more precise at both extremes [see Khaw et al. (2025) for
details]
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Another Kind of Inhomogeneity in Precision

@ The “inverse-S shaped” pattern of biases can also be explained
as optimal adaptation to noise in the internal representation
of the relative proportions

— under the hypothesis that the representation of proportions is
more precise at both extremes [see Khaw et al. (2025) for
details]

@ This provides a possible explanation for the shape of the
“probability weighting function” of prospect theory

[to discuss further in Lecture 3]
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Logarithmic Encoding Model: Details

@ Suppose that for each of two stimuli with magnitudes X;
(i=1,2),
r; ~ N(logX;, 1/2)

@ And suppose also that 2 is judged to be greater than 1 if and
onlyifn>n

@ Then

log X2/ X
Prob["2 is greater"] = Prob[r,—n >0] = & ( og Xa/ 1>

V2v

is an increasing function of the ratio X/ Xj, independent of
absolute magnitudes [“Weber’s Law” ]
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Logarithmic Encoding Model: Details

@ Now consider instead an estimation task. Suppose
r ~ N(log X, v?)

and estimation rule is optimized for a prior distribution

log X ~ N(u,o?)

@ Then same calculations as on slide 10 imply that, conditional on
subjective representation r, the posterior distribution for
x = log X is given by N(fi, 62), with

5 1

p=p+Blr—p) 0 = 5212
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Properties of a Log-Normal Posterior

o If the posterior distribution of log X is normal, then the posterior
distribution of X is log-normal. This is a two-parameter family
of probability distributions (parameterized by y and o, the mean
and standard deviation of log X).

@ Properties of a log-normally distributed random variable: if
log X ~ N(u,c?),
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Logarithmic Encoding Model: Details

o If we assume that a subject’s estimate X of the magnitude X,
based on the subjective representation r, is chosen so as to
minimize the mean squared error,

E[(X — X)?],
then X(r) = E[X|r], so that
log X(r) = i+ (1/2)6% = p+ B(r — ) +02/2
@ Then conditional on the value of X,

log X ~ N(u+ B(log X —u)+62/2, B*v?)
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Logarithmic Encoding Model: Details

@ The properties of a log-normal distribution then imply:
log E[X|X] = u+Bllog X —u)+62/2+ p*?/2
Sd[\)/\(‘X] _ [eﬁ2v2 o 1]1/2
E[X|X]

@ Thus the model predicts:

° IogE[X] a linear function of log X [linear log-log plot] with
slope 0 < B < 1; so E[X] an increasing, strictly concave
function of X

e cross-over point X* between over/under-estimation satisfies
X* = k-E[X], where k > 0 is independent of y (but depends
on o) [central tendency of judgment]

o s.d.[X] grows in proportion to E[X] as X increases
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Logarithmic Encoding Model: Details

@ The model also implies that, in the case of adaptation to a given
distribution of presented stimuli [fixing 2 and |, a manipulation
that increases the imprecision of the internal representation [i.e.,
increases V|, such as an increase in time pressure, should

e increase subjective uncertainty about the right estimate, since
larger v implies a larger ¢, and hence a larger standard
deviation of the posterior,

s.d.[X|r] = [exp(6?) — 1]Y2X(r),
associated with any given response X(r); and

o reduce the elasticity 8 of the mean response E[X |X] with
respect to increases in X

as observed by Xiang et al. (2021).
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