# Lecture 2: Noisy Cognition and Response Biases

Michael Woodford

Columbia University

A Short Course on Cognitive Imprecision Northwestern University November 12, 2025

#### Inference from Noisy Representations

 We have discussed the idea that randomness in observed choices may reflect application of an optimal decision criterion, but taking as input a noisy representation of the decision problem

#### Inference from Noisy Representations

- We have discussed the idea that randomness in observed choices may reflect application of an optimal decision criterion, but taking as input a noisy representation of the decision problem
- Optimal inference from noisy representations will generally imply estimated values that are not even on average equal to a correct valuation (based on the objective characteristics, rather than their noisy representation)
  - hence cognitive noise of this kind can be a source of systematic **bias** in choices

#### Inference from Noisy Representations

- We have discussed the idea that randomness in observed choices may reflect application of an optimal decision criterion, but taking as input a noisy representation of the decision problem
- Optimal inference from noisy representations will generally imply estimated values that are not even on average equal to a correct valuation (based on the objective characteristics, rather than their noisy representation)
  - hence cognitive noise of this kind can be a source of systematic **bias** in choices
- Biases of this kind are clearly seen in perceptual domains, where it is clear what an objectively correct judgment would be

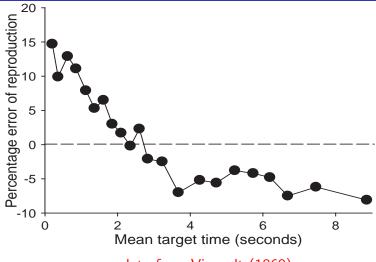
#### Regression Bias

In the case of estimates of physical magnitudes — judgments about the size of something that may be larger or smaller — it is commonly found that on average "people tend to underestimate high values ... and to overestimate low ones" ("conservatism": Hilbert, 2012; Petzscner et al., 2015, call this "regression bias")

#### Regression Bias

- In the case of estimates of physical magnitudes judgments about the size of something that may be larger or smaller it is commonly found that on average "people tend to underestimate high values ... and to overestimate low ones" ("conservatism": Hilbert, 2012; Petzscner et al., 2015, call this "regression bias")
- An early example: "Vierordt's Law": short time intervals tend to be over-estimated, while long time intervals tend to under-estimated
  - classic experiment [Vierordt, 1868]: subject hears two successive taps, then must try to reproduce the same time interval themselves

#### Vierordt's Law



data from Vierordt (1868) [figure from Lejeune and Wearden (2009)]

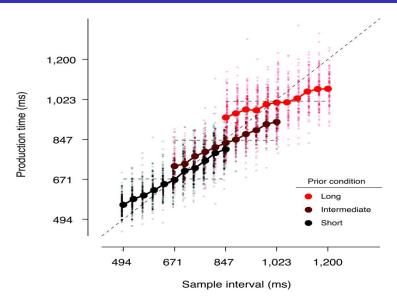
#### Context-Dependent Bias

- However, the distribution of estimates associated with a given stimulus doesn't depend only on the objective properties of that individual stimulus
  - it also depends on the **context** in which the stimulus appears

## Context-Dependent Bias

- However, the distribution of estimates associated with a given stimulus doesn't depend only on the objective properties of that individual stimulus
  - it also depends on the **context** in which the stimulus appears
- Jazayeri and Shadlen (2010): plot range of production intervals associated with a given presented interval, on days on which the mean interval previously presented is different
  - the three different "prior conditions" shown in their figure [prior **mean** is shown by dashed horizontal line for each condition]

#### Estimated Time Intervals (Jazayeri and Shadlen, 2010)



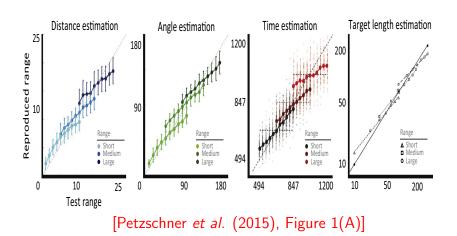
#### Central Tendency of Judgment

- Petzschner et al. (2015) note that this kind of pattern is observed in a large variety of different cases of estimation of an extensive magnitude:
  - estimation of distances, estimation of angles, estimation of sizes of objects, etc.

## Central Tendency of Judgment

- Petzschner et al. (2015) note that this kind of pattern is observed in a large variety of different cases of estimation of an extensive magnitude:
  - estimation of distances, estimation of angles, estimation of sizes of objects, etc.
- Hollingworth (1910) calls this the "central tendency of judgment"

## Central Tendency of Judgment



 The pervasiveness of this kind of bias (and the "central tendency" in particular) can be explained as a consequence of optimal adaptation to the presence of noise in the internal evidence ("sensory evidence") upon which the subject's estimates are based

- The pervasiveness of this kind of bias (and the "central tendency" in particular) can be explained as a consequence of optimal adaptation to the presence of noise in the internal evidence ("sensory evidence") upon which the subject's estimates are based
- A simple model: suppose that objective magnitude X has a noisy internal representation r, an independent draw [each time a stimulus is presented] from distribution

$$r \sim N(X, \nu^2)$$

where [for now!] the noise variance  $v^2$  is independent of X

- The pervasiveness of this kind of bias (and the "central tendency" in particular) can be explained as a consequence of optimal adaptation to the presence of noise in the internal evidence ("sensory evidence") upon which the subject's estimates are based
- A simple model: suppose that objective magnitude X has a noisy internal representation r, an independent draw [each time a stimulus is presented] from distribution

$$r \sim N(X, \nu^2)$$

where [for now!] the noise variance  $v^2$  is independent of X

• What inference about the magnitude *X* can be drawn from access to the noisy representation *r*?

Suppose further that in a given environment, the values of X
that are encountered are themselves independent draws [each
time a stimulus is presented] from a prior distribution that is also
Gaussian

$$X \sim N(\mu, \sigma^2)$$

Suppose further that in a given environment, the values of X
that are encountered are themselves independent draws [each
time a stimulus is presented] from a prior distribution that is also
Gaussian

$$X \sim N(\mu, \sigma^2)$$

 Then in this environment, the joint distribution of (X, r) will be bivariate Gaussian, and the posterior distribution for X given an observation r is of the form

$$X|r\sim N(\hat{\mu}(r),\,\hat{\sigma}^2)$$
 where  $\hat{\mu}(r)\equiv \mu+\beta(r-\mu), \qquad \beta\equiv rac{\sigma^2}{\sigma^2+
u^2}<1$   $\hat{\sigma}^2\equiv rac{\sigma^2
u^2}{\sigma^2+
u^2}=(1-eta)\sigma^2$ 

10 / 59

- What would an optimal response rule for subject be?
  - perceptual experiments of this kind typically not incentivized, so subjects' objectives unclear; but if for example response rule is adapted to **minimize MSE**, response will be

$$\hat{X}(r) = E[X|r] = \mu + \beta(r - \mu)$$

- What would an optimal response rule for subject be?
  - perceptual experiments of this kind typically not incentivized, so subjects' objectives unclear; but if for example response rule is adapted to **minimize MSE**, response will be

$$\hat{X}(r) = E[X|r] = \mu + \beta(r - \mu)$$

 This predicts random responses, conditional on objective stimulus:

$$var[\hat{X} | X] = \beta^2 var[r | X] = \beta^2 v^2$$

— and **mean** response will be **biased**:

$$E[\hat{X} | X] = (1 - \beta)\mu + \beta E[r | X] = (1 - \beta)\mu + \beta X$$

$$E[\hat{X} | X] = \mu + \beta (X - \mu)$$

• Since  $\beta$  < 1, this implies **regression bias**:

$$E[\hat{X} | X] > X$$
 for all **small** enough  $X (X < \mu)$ 

$$\mathrm{E}[\hat{X} \mid X] \ < \ X \ \text{ for all large enough } X \ (X > \mu)$$

$$E[\hat{X} | X] = \mu + \beta (X - \mu)$$

• Since  $\beta$  < 1, this implies **regression bias**:

$$\mathrm{E}[\hat{X} \mid X] > X$$
 for all **small** enough  $X$   $(X < \mu)$   $\mathrm{E}[\hat{X} \mid X] < X$  for all **large** enough  $X$   $(X > \mu)$ 

- And if the ranges of stimuli encountered in different contexts differ, an optimally adapted decision rule for each context should result in a different mapping  $\mathrm{E}[\hat{X} \mid X]$ 
  - the "crossover point" should always be where  $X = \mu$ , the **prior mean** for that context, in accordance with Hollingsworth's "central tendency of judgment"

• Fixing the statistics of the environment  $(\mu, \sigma^2)$ , the model also makes predictions about how bias should change if  $\nu^2$  is higher in some contexts than others:

larger  $v^2 \Rightarrow \text{smaller } \beta \Rightarrow \text{stronger regression bias}$ 

• Fixing the statistics of the environment  $(\mu, \sigma^2)$ , the model also makes predictions about how bias should change if  $\nu^2$  is higher in some contexts than others:

larger 
$$v^2 \Rightarrow \text{smaller } \beta \Rightarrow \text{stronger regression bias}$$

- And indeed regression bias is stronger in contexts where sensory evidence is noisier:
  - bias in estimated speed of a moving visual image greater when image is presented with lower visual contrast (Stocker and Simoncelli, 2006)

- Another example:
  - when subjects must compare the sizes of two stimuli presented sequentially, they over-estimate the relative size of the first stimulus when both are relatively small, but under-estimate the size of the first stimulus when both are relatively large
    - consistent with Bayesian model of regression bias if information **held longer in working memory** is retrieved with **greater noise** (Ashourian and Loewenstein, 2011)

- Another example:
  - when subjects must compare the sizes of two stimuli presented sequentially, they over-estimate the relative size of the first stimulus when both are relatively small, but under-estimate the size of the first stimulus when both are relatively large
    - consistent with Bayesian model of regression bias if information **held longer in working memory** is retrieved with **greater noise** (Ashourian and Loewenstein, 2011)
- Additional kind of causal manipulation to increase cognitive noise: central-tendency effect increased by increasing "cognitive load" (Allred et al., 2016)

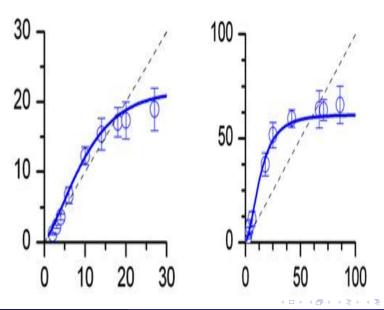
- But do such biases in estimation of physical magnitudes on the basis of sensory evidence matter for economic decisions?
- Recall from Lecture 1: there is reason to believe that numerical information is also represented imprecisely in the brain

- But do such biases in estimation of physical magnitudes on the basis of sensory evidence matter for economic decisions?
- Recall from Lecture 1: there is reason to believe that numerical information is also represented imprecisely in the brain
- Much of what we know about imprecision in number representation comes from studies of the accuracy of judgments about the numerosity of visual arrays

• For example, the precision of **estimates** of numerosity has been studied experimentally, at least since Jevons (1871)

- For example, the precision of **estimates** of numerosity has been studied experimentally, at least since Jevons (1871)
- These estimates also commonly exhibit regression bias: over-estimation of small numbers, under-estimation of larger ones
  - as well as the **central tendency of judgment**

# Numerosity Estimation [from Anobile et al. (2012)]



 The degree of regression bias also seems to be higher when internal representation of numerosity is noisier

- The degree of regression bias also seems to be higher when internal representation of numerosity is noisier
- Xiang et al. (2021) show this in two ways:
  - sort experimental trials according to degree of uncertainty about the number expressed by the subject
  - seek to increase cognitive noise by allowing less time

- The degree of regression bias also seems to be higher when internal representation of numerosity is noisier
- Xiang et al. (2021) show this in two ways:
  - sort experimental trials according to degree of uncertainty about the number expressed by the subject
  - seek to increase cognitive noise by allowing less time
- Both greater reported uncertainty (for whatever reason) and less time are associated with
  - more variable responses
  - stronger regression bias

#### "Behavioral Attenuation"

• Similar biases are also observed in more complex decisions, that seem to require **reasoning** 

#### "Behavioral Attenuation"

- Similar biases are also observed in more complex decisions, that seem to require reasoning
- Enke et al. (2025) document the ubiquity of a pattern that they call behavioral attenuation across a wide range of decision problems:
  - insufficient responsiveness of DM's decision to variation in parameters of the problem, relative to an optimal decision
    - as with "regression bias" in perceptual domains
  - moreover, the elasticity of decisions w.r.t. parameter variation is decreased when there is greater uncertainty about best decision
    - as in the Xiang et al. study of numerosity estimation

#### "Behavioral Attenuation"

- Found both in
  - pure calculation tasks (statistical inference, optimization), where there is an objectively correct answer (as with the perceptual tasks above), and in
  - preferential choice tasks (effort supply, saving, etc.), where the experimenter doesn't know what subjects' preferences are
- In latter case, can nonetheless observe the signature of this effect when responses are less elastic in the case of greater uncertainty

# "Recall" Task (Stock Valuation)

- Example of a calculation task ["Recall" task]: subjects must estimate the value (in dollars) of a particular (fictitious) stock, on the basis of how many positive or negative news items there have been about the company
  - all news items are simply "positive" or "negative" (only sign matters)
  - the signs of all the news items are displayed on the screen
  - the subject is told the formula for converting news into implied dollar value — so task is just a calculation using information on the screen

#### "Recall" Task: Decision Screen

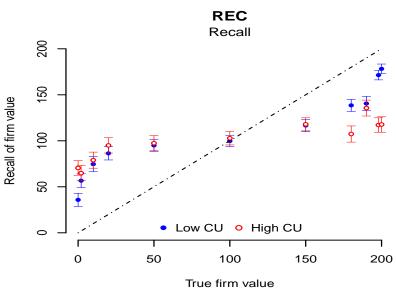
In this round:

Reminder: Stock price (in \$) = 100 + number of positive news - number of negative news

Company name: TigerThrive Fitness Positive news: Negative news: What do you think is the stock price of this company? \$10 How certain are you that the stock price is actually somewhere between \$9 and \$11? Very uncertain Completely certain 0% 25% 50% 75%

Lecture 2

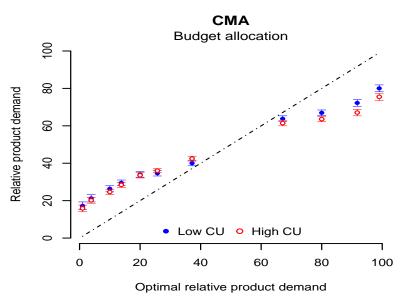
#### "Recall" Task: Behavioral Attenuation



# "Allocation" Task (Consumer Demand)

- Another seemingly "economic" task that is actually a pure computation: subjects must decide how to allocate their budget between purchases of two goods, given their prices
  - subject is told the utility function (both a formula and a graph)
  - their monetary reward is proportional to the "utility" obtained
     they don't actually consume the items that they choose to "buy"

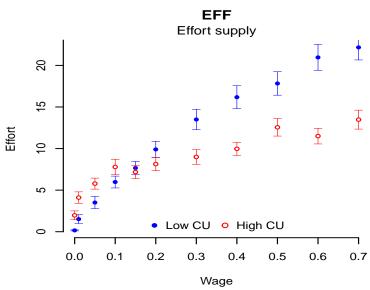
#### "Allocation" Task: Behavioral Attenuation



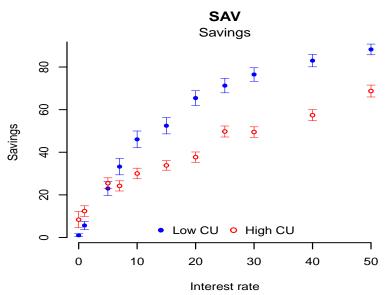
#### Preferential Tasks

- Other tasks involve choices where the subject's reward will depend on their own preferences:
  - "Effort supply" task: subject decides how many tasks to complete, given the wage (piece rate) offered
  - "Saving" task: subject decides how much of an endowment to "save," given the interest factor by which money will be multiplied if payment is taken later

# "Effort Supply" Task: Behavioral Attenuation



### "Saving" Task: Behavioral Attenuation

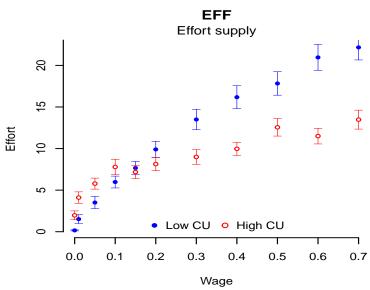


- Enke et al. show that variations in subjective uncertainty co-vary with the degree of behavioral attenuation, not just across subjects or for other reasons orthogonal to the nature of the decision problem (e.g., variation across trials in the degree of distraction or fatigue)
  - but also as functions of the **parameter values** defining the particular decision problem (for a given type of problem)
  - different ranges of parameter values result in different degrees of **subjective uncertainty**, and this is associated with correspondingly different **elasticities of behavioral response** to parameter variation when the parameters are in different ranges

- Enke et al. further propose a general regularity about how cognitive uncertainty (and hence behavioral elasticity) varies with parameter values: CU increases the greater the distance from any "simple points"
  - special parameter values for which the decision simplifies

- Enke et al. further propose a general regularity about how cognitive uncertainty (and hence behavioral elasticity) varies with parameter values: CU increases the greater the distance from any "simple points"
  - special parameter values for which the decision simplifies
- In many cases, the "simple point" will be a zero value (e.g., a zero wage in "effort supply" task)
  - in this case, the prediction of declining behavioral elasticity as a parameter increases away from zero coincides with the familiar idea of "diminishing marginal sensitivity" (Kahneman and Tversky, 1979)

## "Effort Supply" Task: Diminishing Sensitivity

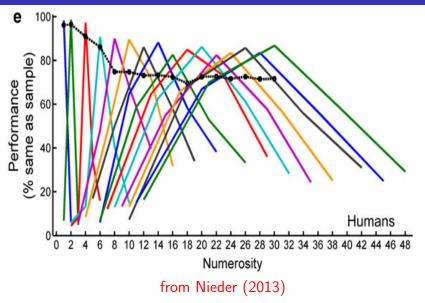


 Nonlinear response distortion of this kind is what is predicted by a Bayesian model of optimal decision making in the presence of cognitive noise, if the degree of noise is inhomogeneous [unlike what was assumed in linear-Gaussian example above]

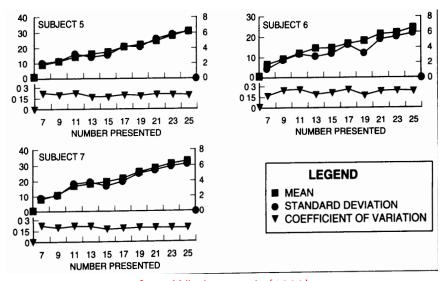
- Nonlinear response distortion of this kind is what is predicted by a Bayesian model of optimal decision making in the presence of cognitive noise, if the degree of noise is inhomogeneous [unlike what was assumed in linear-Gaussian example above]
- And it's familiar in the study of imprecise perceptual judgments that the size of the difference in a physical stimulus magnitude required for two stimuli to be discriminated with a given accuracy is not constant over the stimulus space
  - famously, "Weber's Law" asserts that the amount by which a second magnitude (length, weight, ...) must be greater for a given degree of discriminability grows in proportion to the first magnitude

- Imprecise judgments of numerosity are often argued to be like this
  - leading authors like Dehaene (2011) to argue that numbers are subjectively represented on a **logarithmic** "mental number line"

## Numerosity Discrimination



#### Numerosity Estimation



from Whalen et al. (1999)

• This kind of variability in the precision of number representation can be captured by the hypothesis that the size of a number X > 0 is a represented by a random quantity  $r_x$  drawn from a distribution

$$r_{x} \sim N(\log X, \nu^{2})$$

— then the degree of **overlap** between the distributions of internal representations of two numbers  $X_1$ ,  $X_2$  will be a decreasing function of  $|\log(X_2/X_1)|$ 

• This kind of variability in the precision of number representation can be captured by the hypothesis that the size of a number X > 0 is a represented by a random quantity  $r_x$  drawn from a distribution

$$r_{x} \sim N(\log X, \nu^{2})$$

- then the degree of **overlap** between the distributions of internal representations of two numbers  $X_1$ ,  $X_2$  will be a decreasing function of  $|\log(X_2/X_1)|$
- But this kind of inhomogeneity in the precision of number representation also has implications for the kind of bias should be observed in numerosity estimates, if the response rule is optimally adapted to the nature of the noisy representation

36 / 59

• Suppose that the **prior** distribution over numerosities to which the response rule is adapted is **log-normal**:

$$\log X \sim N(\mu, \omega^2)$$

 Suppose that the prior distribution over numerosities to which the response rule is adapted is log-normal:

$$\log X \sim N(\mu, \omega^2)$$

• Then the **posterior** distribution for X, conditional on a given representation  $r_x$ , will also be **log-normal**,

$$\log X | r_x \sim N(\hat{\mu}(r_x), \hat{\omega}^2)$$

and the posterior mean (minimum-MSE estimate of X)  $\hat{X}$  will be given by

$$\hat{X} = \exp(\hat{\mu}(r_x) + \frac{1}{2}\hat{\omega}^2)$$

• This provides a model of the distribution of estimates  $\hat{X}$  associated with a given true numerosity X, that should be log-normal with conditional moments

$$m(X) \equiv E[\hat{X}|X] = AX^{\beta}, \quad var[\hat{X}|X] = BE[\hat{X}|X]^2$$

where A, B > 0 are constants, and

$$\beta = \frac{\sigma^2}{\sigma^2 + \nu^2} < 1$$

[see slides at end for details]

• This provides a model of the distribution of estimates  $\hat{X}$  associated with a given true numerosity X, that should be log-normal with conditional moments

$$m(X) \equiv E[\hat{X}|X] = AX^{\beta}, \quad var[\hat{X}|X] = BE[\hat{X}|X]^{2}$$

where A, B > 0 are constants, and

$$\beta = \frac{\sigma^2}{\sigma^2 + \nu^2} < 1$$

[see slides at end for details]

• The model implies that  $\partial m(X)/\partial X$  will be **decreasing** the farther one gets from the "simple point" X=0, as is indeed observed in experimental data for numerosity estimation

 This model of imprecise assessment of the size of a numerical quantity provides an explanation for small-stakes risk aversion (Khaw et al., 2021)

- This model of imprecise assessment of the size of a numerical quantity provides an explanation for small-stakes risk aversion (Khaw et al., 2021)
  - in Lecture 1, we proposed a model in which we would obtain an "indifference point" indicating risk-aversion if and only if the noisy representations of monetary payoffs X and C implied that

$$E[X | \mathbf{r}] > 2 \cdot E[C | \mathbf{r}],$$

with probability less than 1/2, even for values of X/C modestly greater than 2

- This model of imprecise assessment of the size of a numerical quantity provides an explanation for small-stakes risk aversion (Khaw et al., 2021)
  - in Lecture 1, we proposed a model in which we would obtain an "indifference point" indicating risk-aversion if and only if the noisy representations of monetary payoffs X and C implied that

$$E[X | r] > 2 \cdot E[C | r],$$

with probability less than 1/2, even for values of X/C modestly greater than 2

• we now have a model of noisy coding where that will be true: suppose that each payoff  $Q_i = X$ , C has a noisy representation  $r_i$ , a conditionally independent draw from

$$r_i \sim N(\log Q_i, \nu^2)$$

 Then if there is also a (common) independent log-normal prior for each of these quantities, we will have

$$E[Q_i | \mathbf{r}] = E[Q_i | \mathbf{r}_i] = \exp(\alpha + \beta r_i)$$
$$= AQ_i^{\beta} \xi_i$$

where  $\xi_i$  is an independent log-normal multiplicative error term

 Then if there is also a (common) independent log-normal prior for each of these quantities, we will have

$$E[Q_i | \mathbf{r}] = E[Q_i | \mathbf{r}_i] = \exp(\alpha + \beta r_i)$$
$$= AQ_i^{\beta} \xi_i$$

where  $\xi_i$  is an independent log-normal multiplicative error term

 So DM chooses the risky gamble more often than not (conditional on X, C) if and only if

$$\frac{1}{2}u(X) > u(C)$$

where we define  $u(Q) = \mathbb{E}[\hat{Q} | Q] = AQ^{\beta}$ 

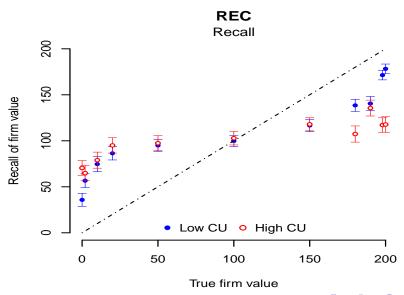
$$\frac{1}{2}u(X) > u(C)$$

- The modal choice is determined as if the outcome of the gamble is considered in isolation from the DM's other sources of wealth ["narrow bracketing"], and payoffs are valued in accordance with a strictly concave vonN-M utility function [or PT "value function"]
  - even though the decision rule is actually optimized to maximize the expected **total financial wealth** of the DM [no narrow bracketing, no actual risk aversion for gambles of this size]

#### Another Kind of Inhomogeneity in Precision

- There can also be multiple "simple points", as in the "recall" task of Enke et al.:
  - both the case of all good news and the case of all bad news are cases that can be easily distinguished from nearby cases
    - leading to repulsion from both points

### "Recall" Task: Repulsion from Both Ends



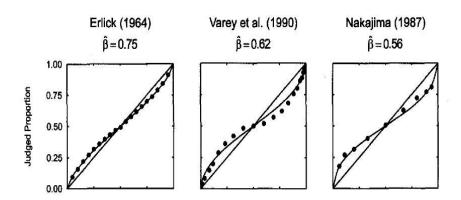
#### Another Kind of Inhomogeneity in Precision

- There can also be **multiple "simple points"**, as in the "recall" task of Enke *et al.*:
  - both the case of all good news and the case of all bad news are cases that can be easily distinguished from nearby cases
    - leading to **repulsion** from both points
- And the special character of these points seems more clearly to relate to the precision with which the evidence is represented, rather than simplicity of solution of the arithmetic calculation

#### Another Kind of Inhomogeneity in Precision

- In fact, a similar phenomenon is common in purely perceptual estimation tasks
  - when subjects have to estimate the **relative proportion** of two extensive magnitudes: fraction of dots in an array that are of a particular color, fraction of letters in a sequence that have been *A*s, etc. [see Hollands and Dyre (2000)]

## Bias in Judged Proportions



[figure from Hollands and Dyre (2000)]
horizontal axis = true proportion
note similar "inverse-S shaped" curve in each case

#### Another Kind of Inhomogeneity in Precision

- In fact, a similar phenomenon is common in purely perceptual estimation tasks
  - when subjects have to estimate the **relative proportion** of two extensive magnitudes: fraction of dots in an array that are of a particular color, fraction of letters in a sequence that have been *A*s, etc. [see Hollands and Dyre (2000)]
- This suggests that the pattern in the "recall" task is mainly about imprecision in recognition of which fraction of the news is good rather than bad, rather than imprecision in the calculations required by the formula

#### Another Kind of Inhomogeneity in Precision

- The "inverse-S shaped" pattern of biases can also be explained as optimal adaptation to noise in the internal representation of the relative proportions
  - under the hypothesis that the representation of proportions is more precise at both extremes [see Khaw et al. (2025) for details]

### Another Kind of Inhomogeneity in Precision

- The "inverse-S shaped" pattern of biases can also be explained as optimal adaptation to noise in the internal representation of the relative proportions
  - under the hypothesis that the representation of proportions is more precise at both extremes [see Khaw et al. (2025) for details]
- This provides a possible explanation for the shape of the "probability weighting function" of prospect theory

[to discuss further in Lecture 3]

#### References

Allred, S.R., L.E. Crawford, S. Duffy, and J. Smith, "Working Memory and Spatial Judgments: Cognitive Load Increases the Central Tendency Bias," *Psychonomic Bull. and Review* 23: 1825-31 (2016).

Anobile, G., G.M. Cicchini, and D.C. Burr, "Linear Mapping of Numbers Onto Space Requires Attention," *Cognition* 122: 454-459 (2012).

Ashourian, P., and Y. Loewenstein, "Bayesian Inference Underlies the Contraction Bias in Delayed Comparison Tasks," *PloS One* 6, e19551 (2011).

Dehaene (2011): see references for Lecture 1

# References (p.2)

Enke, B., T. Graeber, R. Oprea, and J. Yang, "Behavioral Attenuation," working paper, Harvard University, September 2025.

Hilbert, M., "Toward a Synthesis of Cognitive Biases: How Noisy Information Processing Can Bias Human Decision Making," *Psychological Bulletin* 138: 211-237 (2012).

Hollands, J.G., and B.P. Dyre, "Bias in Proportion Judgments: The Cyclical Power Model," *Psychological Review* 107: 500-524 (2000).

Hollingworth, H.L., "The Central Tendency of Judgment," *Journal of Philosophy* 7: 461-469 (1910).

# References (p.3)

Jazayeri, M., and M.N. Shadlen, "Temporal Context Calibrates Interval Timing," *Nature Neuroscience* 13: 1020-1026 (2010).

Jevons, W.S., "The Power of Numerical Discrimination," *Nature* 3: 281-282 (1871).

Kahneman, D., and A. Tversky, "Prospect Theory: An Analysis of Decision Under Risk," *Econometrica* 47: 263-291 (1979).

Khaw et al. (2021): see references for Lecture 1

# References (p.4)

Khaw, M.W., Z. Li, and M. Woodford, "Cognitive Imprecision and Stake-Dependent Risk Attitudes," NBER Working Paper no. 30417, revised August 2025.

Lejeune, H., and J.H. Wearden, "Vierordt's *The Experimental Study of the Time Sense* (1868) and its Legacy," *European Journal of Cognitive Psychology* 21: 941-960 (2009).

Nieder, A., "Coding of Abstract Quantity by 'Number Neurons' in the Primate Brain," *J. Comparative Physiology A* 199: 1-16 (2013).

Petzschner, F.H., S. Glasauer, and K.E. Stephan, "A Bayesian Perspective on Magnitude Estimation," *Trends in Cognitive Sciences* 19: 285-293 (2015).

# References (p.5)

Stocker, A.A., and E.P. Simoncelli, "Noise Characteristics and Prior Expectations in Human Visual Speed Perception," *Nature Neuroscience* 9: 578-585 (2006).

Vierordt, K., *Der Zeitsinn nach Versuchen* [The Sense of Time From Experiments], Tubingen, Germany: Laupp, 1868.

Whalen, J., C.R. Gallistel, and R. Gelman, "Nonverbal Counting in Humans: The Psychophysics of Number Representation," *Psychological Science* 10: 130-137 (1999).

Xiang, Y., T. Graeber, B. Enke, and S. Gershman, "Confidence and Central Tendency in Perceptual Judgments," *Attention, Perception & Psychophysics* 83: 3024-3034 (2021).

53 / 59

• Suppose that for each of two stimuli with magnitudes  $X_i$  (i = 1, 2),

$$r_i \sim N(\log X_i, \nu^2)$$

- And suppose also that 2 is judged to be greater than 1 if and only if  $r_2 > r_1$
- Then

Prob["2 is greater"] = 
$$Prob[r_2 - r_1 > 0] = \Phi\left(\frac{\log X_2/X_1}{\sqrt{2}\nu}\right)$$

is an increasing function of the ratio  $X_2/X_1$ , independent of absolute magnitudes ["Weber's Law"]

Now consider instead an estimation task. Suppose

$$r \sim N(\log X, \nu^2)$$

and estimation rule is optimized for a prior distribution

$$\log X \sim N(\mu, \sigma^2)$$

• Then same calculations as on slide 10 imply that, conditional on subjective representation r, the **posterior distribution** for  $x \equiv \log X$  is given by  $N(\hat{\mu}, \hat{\sigma}^2)$ , with

$$\hat{\mu} \equiv \mu + \beta(r - \mu), \quad \hat{\sigma}^2 \equiv \frac{1}{\sigma^{-2} + \nu^{-2}}$$

### Properties of a Log-Normal Posterior

- If the posterior distribution of  $\log X$  is normal, then the posterior distribution of X is **log-normal**. This is a two-parameter family of probability distributions (parameterized by  $\mu$  and  $\sigma$ , the mean and standard deviation of  $\log X$ ).
- Properties of a log-normally distributed random variable: if  $\log X \sim N(\mu, \sigma^2)$ ,

$$\mathrm{E}[X] = \mathrm{e}^{\mu + (1/2)\sigma^2}$$

$$Var[X] = [e^{\sigma^2} - 1] e^{2\mu + \sigma^2}$$

• If we assume that a subject's estimate  $\hat{X}$  of the magnitude X, based on the subjective representation r, is chosen so as to minimize the **mean squared error**,

$$E[(\hat{X}-X)^2]$$
,

then  $\hat{X}(r) = E[X|r]$ , so that

$$\log \hat{X}(r) = \hat{\mu} + (1/2)\hat{\sigma}^2 = \mu + \beta(r - \mu) + \hat{\sigma}^2/2$$

Then conditional on the value of X,

$$\log \hat{X} \sim N(\mu + \beta(\log X - \mu) + \hat{\sigma}^2/2, \beta^2 \nu^2)$$



• The properties of a log-normal distribution then imply:

$$\log E[\hat{X}|X] = \mu + \beta(\log X - \mu) + \hat{\sigma}^2/2 + \beta^2 \nu^2/2$$

$$\frac{\text{s.d.}[\hat{X}|X]}{E[\hat{X}|X]} = [e^{\beta^2 \nu^2} - 1]^{1/2}$$

- Thus the model predicts:
  - $\log E[\hat{X}]$  a linear function of  $\log X$  [linear log-log plot] with slope  $0 < \beta < 1$ ; so  $E[\hat{X}]$  an increasing, **strictly concave** function of X
  - cross-over point  $X^*$  between over/under-estimation satisfies  $X^* = k \cdot \mathrm{E}[X]$ , where k > 0 is independent of  $\mu$  (but depends on  $\sigma$ ) [central tendency of judgment]
  - $s.d.[\hat{X}]$  grows in proportion to  $E[\hat{X}]$  as X increases

- The model also implies that, in the case of adaptation to a given distribution of presented stimuli [fixing  $\mu$  and  $\sigma$ ], a manipulation that increases the imprecision of the internal representation [i.e., increases  $\nu$ ], such as an increase in time pressure, should
  - increase subjective uncertainty about the right estimate, since larger  $\nu$  implies a larger  $\hat{\sigma}$ , and hence a larger standard deviation of the posterior,

s.d.
$$[X | r] = [\exp(\hat{\sigma}^2) - 1]^{1/2} \hat{X}(r),$$

associated with any given response  $\hat{X}(r)$ ; and

• reduce the elasticity  $\beta$  of the mean response  $\mathrm{E}[\hat{X}\,|X]$  with respect to increases in X

as observed by Xiang et al. (2021).

