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Inference from Noisy Representations

We have discussed the idea that randomness in observed choices
may reflect application of an optimal decision criterion, but
taking as input a noisy representation of the decision problem

Optimal inference from noisy representations will generally imply
estimated values that are not even on average equal to a
correct valuation (based on the objective characteristics, rather
than their noisy representation)

— hence cognitive noise of this kind can be a source of
systematic bias in choices

Biases of this kind are clearly seen in perceptual domains,
where it is clear what an objectively correct judgment would be
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Regression Bias

In the case of estimates of physical magnitudes — judgments
about the size of something that may be larger or smaller — it is
commonly found that on average “people tend to
underestimate high values ... and to overestimate low ones”
(“conservatism”: Hilbert, 2012; Petzscner et al., 2015, call
this “regression bias”)

An early example: “Vierordt’s Law”: short time intervals tend
to be over-estimated, while long time intervals tend to
under-estimated

— classic experiment [Vierordt, 1868]: subject hears two
successive taps, then must try to reproduce the same time
interval themselves
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Vierordt’s Law

data from a condition without a delay, and the lower panel reproduction

after a delay determined by the participant himself. The measure provided is

the difference between the target time and the time reproduced, expressed as

a percentage of the target time. Positive values indicate that the reproduced

time was longer than the target time, negative values that it was smaller.
Inspection of the data shows Vierordt’s Law in one of its simplest forms:

The intervals reproduced are longer than the target time when it is short, but

shorter than it when it is long. The ‘‘indifference point’’ where the

reproductions are accurate lies at around 2 (upper panel) or 3 (lower panel) s.
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Figure 1. Upper panel: Data from two reproduction experiments with Vierordt as participant.

The x-axis shows the target time to be reproduced; the y-axis shows the value of the reproduction,

expressed as a percentage difference between the reproduction and the target time. Positive values

indicate that the reproduction is longer than the target time; negative values indicate that it is lower.

The dashed horizontal lines show accurate reproduction. Upper panel: Immediate reproduction

(after Vierordt, 1868, Table A, p. 36). Lower panel: Delayed reproduction. Read as the upper panel

(after Vierordt, 1868, Table B, p. 38).
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data from Vierordt (1868)
[figure from Lejeune and Wearden (2009)]
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Context-Dependent Bias

However, the distribution of estimates associated with a given
stimulus doesn’t depend only on the objective properties of that
individual stimulus

— it also depends on the context in which the stimulus appears

Jazayeri and Shadlen (2010): plot range of production intervals
associated with a given presented interval, on days on which the
mean interval previously presented is different

— the three different “prior conditions” shown in their figure
[prior mean is shown by dashed horizontal line for each
condition]
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Estimated Time Intervals (Jazayeri and Shadlen, 2010)
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Central Tendency of Judgment

Petzschner et al. (2015) note that this kind of pattern is
observed in a large variety of different cases of estimation of
an extensive magnitude:

— estimation of distances, estimation of angles, estimation of
sizes of objects, etc.

Hollingworth (1910) calls this the “central tendency of
judgment”
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Central Tendency of Judgment

providing a re-interpretation of their laws; and finally (iii)
guide the exploration of the neurobiological underpinnings
of magnitude estimation in health and disease.

A Bayesian framework for magnitude estimation
Regardless of whether we examine the estimation of
time, distances, length, or loudness, certain behavioral
phenomena reoccur across studies (Figure 1A) [23]. The
most common ones are depicted in Figure 1B: (i) A
tendency of subjective estimates to be biased towards
the center of the distribution (regression effect); (ii) an

increase of this bias for larger sample ranges (range
effect); (iii) a linear increase in standard deviation of
estimates with mean magnitude (scalar variability); and
(iv) correlations between subsequent magnitude judg-
ments (sequential or order effects) (see Box 1 for a
detailed description). Although scalar variability seems
to be the consequence of a general logarithmic represen-
tation of magnitudes according to the Weber-Fechner
law [24] (see Box 2 and Glossary), the remaining
effects have often only been explained by modality-
specific theories [17].
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Figure 1. Overview of the behavioral signatures in magnitude estimation and their Bayesian explanation. (A) Similar behavioral characteristics observed in data from four

different magnitude estimation experiments over more than 100 years on distance estimation, turning angle estimation, time estimation, and target length of a guided

movement [18,19,103,104]. Each study used three test ranges (short, medium, and large range). Note that length estimation is plotted on logarithmic scales; therefore, there

is no characteristic curvature in the reproduction data. (B) Detailed depiction of the observed behavioral characteristics in magnitude estimation from (A). The regression

effect refers to a characteristic bias towards the center of each test range, leading to a smaller reproduced range compared to the physical test range. The range effect refers

to an increase of the regression effect for larger sample ranges. Scalar variability refers to a linear increase in standard deviation with the mean of the reproduced

magnitude. Sequential effects refer to a bias in magnitude estimates towards the recent history of stimuli experienced (see also Box 1). (C) A Bayesian framework can

explain the characteristics effects shown in (B). A prior around the center of the test distribution would bias posterior estimates towards the center of the respective test

range, causing the range and regression effect. Scalar variability predicting an increase in standard deviation with the mean of the likelihood would cause the bias to be

stronger for larger magnitudes (larger sample ranges). On all plots: the tested sampled magnitudes are on the X-axis and estimated reproduced magnitudes are on the Y-

axis. Diagonal lines reflect the location of a nonbiased, veridical magnitude estimate. Adapted from [18,19,103] (A).

Review Trends in Cognitive Sciences May 2015, Vol. 19, No. 5

286

[Petzschner et al. (2015), Figure 1(A)]
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A Bayesian Explanation

The pervasiveness of this kind of bias (and the “central
tendency” in particular) can be explained as a consequence of
optimal adaptation to the presence of noise in the internal
evidence (“sensory evidence”) upon which the subject’s
estimates are based

A simple model: suppose that objective magnitude X has a
noisy internal representation r , an independent draw [each time
a stimulus is presented] from distribution

r ∼ N(X , ν2)

where [for now!] the noise variance ν2 is independent of X

What inference about the magnitude X can be drawn from
access to the noisy representation r?
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A Bayesian Explanation

Suppose further that in a given environment, the values of X
that are encountered are themselves independent draws [each
time a stimulus is presented] from a prior distribution that is also
Gaussian

X ∼ N(µ, σ2)

Then in this environment, the joint distribution of (X , r) will be
bivariate Gaussian, and the posterior distribution for X given
an observation r is of the form

X |r ∼ N(µ̂(r), σ̂2)

where µ̂(r) ≡ µ + β(r − µ), β ≡ σ2

σ2 + ν2
< 1

σ̂2 ≡ σ2ν2

σ2 + ν2
= (1− β)σ2
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A Bayesian Explanation

What would an optimal response rule for subject be?

— perceptual experiments of this kind typically not incentivized,
so subjects’ objectives unclear; but if for example response rule is
adapted to minimize MSE, response will be

X̂ (r) = E[X |r ] = µ + β(r − µ)

This predicts random responses, conditional on objective
stimulus:

var[X̂ |X ] = β2var[r |X ] = β2ν2

— and mean response will be biased:

E[X̂ |X ] = (1− β)µ + βE[r |X ] = (1− β)µ + βX
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Cognitive Noise and Estimation Bias

E[X̂ |X ] = µ + β (X − µ)

Since β < 1, this implies regression bias:

E[X̂ |X ] > X for all small enough X (X < µ)

E[X̂ |X ] < X for all large enough X (X > µ)

And if the ranges of stimuli encountered in different contexts
differ, an optimally adapted decision rule for each context should
result in a different mapping E[X̂ |X ]

— the “crossover point” should always be where X = µ, the
prior mean for that context, in accordance with Hollingsworth’s
“central tendency of judgment”
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Cognitive Noise and Estimation Bias

Fixing the statistics of the environment (µ, σ2), the model also
makes predictions about how bias should change if ν2 is higher
in some contexts than others:

larger ν2 ⇒ smaller β ⇒ stronger regression bias

And indeed regression bias is stronger in contexts where sensory
evidence is noisier:

bias in estimated speed of a moving visual image greater when
image is presented with lower visual contrast (Stocker and
Simoncelli, 2006)
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Cognitive Noise and Estimation Bias

Another example:

when subjects must compare the sizes of two stimuli presented
sequentially, they over-estimate the relative size of the first
stimulus when both are relatively small, but under-estimate
the size of the first stimulus when both are relatively large

— consistent with Bayesian model of regression bias if
information held longer in working memory is retrieved with
greater noise (Ashourian and Loewenstein, 2011)

Additional kind of causal manipulation to increase cognitive
noise: central-tendency effect increased by increasing
“cognitive load” (Allred et al., 2016)
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Imprecision in Number Representation

But do such biases in estimation of physical magnitudes on
the basis of sensory evidence matter for economic decisions?

Recall from Lecture 1: there is reason to believe that numerical
information is also represented imprecisely in the brain

Much of what we know about imprecision in number
representation comes from studies of the accuracy of judgments
about the numerosity of visual arrays
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Imprecision in Number Representation

For example, the precision of estimates of numerosity has been
studied experimentally, at least since Jevons (1871)

These estimates also commonly exhibit regression bias:
over-estimation of small numbers, under-estimation of larger
ones

— as well as the central tendency of judgment
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Numerosity Estimation [from Anobile et al. (2012)]
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Imprecision in Number Representation

The degree of regression bias also seems to be higher when
internal representation of numerosity is noisier

Xiang et al. (2021) show this in two ways:

sort experimental trials according to degree of uncertainty
about the number expressed by the subject

seek to increase cognitive noise by allowing less time

Both greater reported uncertainty (for whatever reason) and less
time are associated with

more variable responses

stronger regression bias
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“Behavioral Attenuation”

Similar biases are also observed in more complex decisions, that
seem to require reasoning

Enke et al. (2025) document the ubiquity of a pattern that they
call behavioral attenuation across a wide range of decision
problems:

insufficient responsiveness of DM’s decision to variation in
parameters of the problem, relative to an optimal decision
— as with “regression bias” in perceptual domains

moreover, the elasticity of decisions w.r.t. parameter variation is
decreased when there is greater uncertainty about best
decision
— as in the Xiang et al. study of numerosity estimation
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“Behavioral Attenuation”

Found both in

pure calculation tasks (statistical inference, optimization),
where there is an objectively correct answer (as with the
perceptual tasks above), and in

preferential choice tasks (effort supply, saving, etc.), where
the experimenter doesn’t know what subjects’ preferences are

In latter case, can nonetheless observe the signature of this
effect when responses are less elastic in the case of greater
uncertainty
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“Recall” Task (Stock Valuation)

Example of a calculation task [“Recall” task]: subjects must
estimate the value (in dollars) of a particular (fictitious) stock,
on the basis of how many positive or negative news items there
have been about the company

all news items are simply “positive” or “negative” (only sign
matters)

the signs of all the news items are displayed on the screen

the subject is told the formula for converting news into implied
dollar value — so task is just a calculation using information on
the screen
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“Recall” Task: Decision Screen

Figure 67: Comprehension check for REC task.

Figure 68: Decision screen for REC task.
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“Recall” Task: Behavioral Attenuation
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Figure 9: Decisions as a function of parameters.
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“Allocation” Task (Consumer Demand)

Another seemingly “economic” task that is actually a pure
computation: subjects must decide how to allocate their budget
between purchases of two goods, given their prices

subject is told the utility function (both a formula and a graph)

their monetary reward is proportional to the “utility” obtained
— they don’t actually consume the items that they choose to
“buy”
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“Allocation” Task: Behavioral Attenuation

B Additional Analyses for Main Experiments

B.1 Taskwise Raw Data
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Figure 6: Decisions as a function of parameters.
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Preferential Tasks

Other tasks involve choices where the subject’s reward will
depend on their own preferences:

“Effort supply” task: subject decides how many tasks to
complete, given the wage (piece rate) offered

“Saving” task: subject decides how much of an endowment to
“save,” given the interest factor by which money will be
multiplied if payment is taken later
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“Effort Supply” Task: Behavioral Attenuation

B Additional Analyses for Main Experiments

B.1 Taskwise Raw Data
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“Saving” Task: Behavioral Attenuation
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Inhomogeneity in Cognitive Precision

Enke et al. show that variations in subjective uncertainty co-vary
with the degree of behavioral attenuation, not just across
subjects or for other reasons orthogonal to the nature of the
decision problem (e.g., variation across trials in the degree of
distraction or fatigue)

— but also as functions of the parameter values defining the
particular decision problem (for a given type of problem)

— different ranges of parameter values result in different degrees
of subjective uncertainty, and this is associated with
correspondingly different elasticities of behavioral response
to parameter variation when the parameters are in different
ranges
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Inhomogeneity in Cognitive Precision

Enke et al. further propose a general regularity about how
cognitive uncertainty (and hence behavioral elasticity) varies
with parameter values: CU increases the greater the distance
from any “simple points”

— special parameter values for which the decision simplifies

In many cases, the “simple point” will be a zero value (e.g., a
zero wage in “effort supply” task)

— in this case, the prediction of declining behavioral elasticity as
a parameter increases away from zero coincides with the familiar
idea of “diminishing marginal sensitivity” (Kahneman and
Tversky, 1979)
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“Effort Supply” Task: Diminishing Sensitivity

B Additional Analyses for Main Experiments

B.1 Taskwise Raw Data
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Figure 6: Decisions as a function of parameters.
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Inhomogeneity in Cognitive Precision

Nonlinear response distortion of this kind is what is predicted by
a Bayesian model of optimal decision making in the presence of
cognitive noise, if the degree of noise is inhomogeneous [unlike
what was assumed in linear-Gaussian example above]

And it’s familiar in the study of imprecise perceptual judgments
that the size of the difference in a physical stimulus magnitude
required for two stimuli to be discriminated with a given
accuracy is not constant over the stimulus space

— famously, “Weber’s Law” asserts that the amount by which
a second magnitude (length, weight, ...) must be greater for a
given degree of discriminability grows in proportion to the first
magnitude
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Imprecise Number Representation

Imprecise judgments of numerosity are often argued to be like
this

— leading authors like Dehaene (2011) to argue that numbers
are subjectively represented on a logarithmic “mental number
line”
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Numerosity Discrimination

The neuronal tuning functions (Fig. 3a) mirror the animals’

behavioral performance functions (Fig. 1b). Interestingly,

the neurons’ sequentially arranged overlapping tuning

curves preserved an inherent order of cardinalities. This is

important because numerosities are not isolated categories,

but exist in relation to one another (for example, 3 is

greater than 2 and less than 4); they need to be sequentially

ordered to allow meaningful quantity assignments.

The discrimination precision between numerosities

relying on peak tuned numerosity detectors would benefit

from sharp, and thus only mildly overlapping tuning

functions. We thus hypothesized that the local interactions

between neuron classes in the PFC could help to shape

numerical representations (Diester and Nieder 2008). The

two main classes of neurons in the neocortex are excitatory

pyramidal cells (projection cells; ca. 80% of all neocortical

Fig. 1 Representation of visual cardinality in rhesus monkeys.

a Delayed match-to-sample task with visually presented numerosity

as the stimulus dimension of interest. A trial started when the monkey

grasped a lever and fixated at a central target. After 500 ms of pure

fixation, the sample stimulus (800 ms) cued the monkey for a certain

numerosity it had to memorize during a 1,000-ms delay period. Then,

the test 1 stimulus was presented, which in 50 % of cases was a match

showing the same number of dots as cued during the sample period. In

the other 50 % of cases the test 1 display was a non-match, which

showed a different numerosity as the sample display. After a non-

match test stimulus, a second test stimulus (test 2) appeared that was

always a match. To receive a fluid reward, monkeys were required to

release the lever as soon as a match appeared. Trials were pseudo-

randomized and balanced across all relevant features. Monkeys were

required to maintain fixation throughout the sample and delay period.

b Behavioral numerosity discrimination functions of two monkeys.

The curves indicate whether they judged the first test stimulus (after a

delay) as containing the same number of items as the sample display.

The function peaks (and the color legend) indicate the sample

numerosity at which each curve was derived. c The same behavioral

performance functions plotted on a logarithmic scale resulted in

symmetric functions (from Nieder and Miller 2003). d Behavioral

performance functions of a single monkey M for sample numerosities

1 to 30. e Behavioral performance functions of humans for sample

numerosities 1 to 30. f Weber fractions derived from the performance

of monkey M shown in d. g Weber fractions derived from the

performance of humans shown in e (from Merten and Nieder 2009)

4 J Comp Physiol A (2013) 199:1–16

123

from Nieder (2013)
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Numerosity Estimation

from Whalen et al. (1999)
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Imprecise Number Representation

This kind of variability in the precision of number representation
can be captured by the hypothesis that the size of a number
X > 0 is a represented by a random quantity rx drawn from a
distribution

rx ∼ N(logX , ν2)

— then the degree of overlap between the distributions of
internal representations of two numbers X1,X2 will be a
decreasing function of | log(X2/X1)|

But this kind of inhomogeneity in the precision of number
representation also has implications for the kind of bias should
be observed in numerosity estimates, if the response rule is
optimally adapted to the nature of the noisy representation
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Imprecise Number Representation

Suppose that the prior distribution over numerosities to which
the response rule is adapted is log-normal:

logX ∼ N(µ,ω2)

Then the posterior distribution for X , conditional on a given
representation rx , will also be log-normal,

logX |rx ∼ N(µ̂(rx ), ω̂2)

and the posterior mean (minimum-MSE estimate of X ) X̂ will
be given by

X̂ = exp(µ̂(rx ) +
1

2
ω̂2)
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Imprecise Number Representation

This provides a model of the distribution of estimates X̂
associated with a given true numerosity X , that should be
log-normal with conditional moments

m(X ) ≡ E[X̂ |X ] = AX β, var[X̂ |X ] = BE[X̂ |X ]2

where A,B > 0 are constants, and

β =
σ2

σ2 + ν2
< 1

[see slides at end for details]

The model implies that ∂m(X )/∂X will be decreasing the
farther one gets from the “simple point” X = 0, as is indeed
observed in experimental data for numerosity estimation
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Implications for Behavioral Biases

This model of imprecise assessment of the size of a numerical
quantity provides an explanation for small-stakes risk aversion
(Khaw et al., 2021)

in Lecture 1, we proposed a model in which we would obtain an
“indifference point” indicating risk-aversion if and only if the
noisy representations of monetary payoffs X and C implied that

E[X |r ] > 2 · E[C |r ],
with probability less than 1/2, even for values of X/C
modestly greater than 2

we now have a model of noisy coding where that will be true:
suppose that each payoff Qi = X ,C has a noisy representation
ri , a conditionally independent draw from

ri ∼ N(logQi , ν2)
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Implications for Behavioral Biases

Then if there is also a (common) independent log-normal prior
for each of these quantities, we will have

E[Qi |r ] = E[Qi |r i ] = exp(α + βri )

= AQ
β
i ξi

where ξi is an independent log-normal multiplicative error term

So DM chooses the risky gamble more often than not
(conditional on X ,C ) if and only if

1

2
u(X ) > u(C )

where we define u(Q) = E[Q̂ |Q ] = AQβ
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Implications for Behavioral Biases

1

2
u(X ) > u(C )

The modal choice is determined as if the outcome of the
gamble is considered in isolation from the DM’s other sources of
wealth [“narrow bracketing”], and payoffs are valued in
accordance with a strictly concave vonN-M utility function
[or PT “value function”]

— even though the decision rule is actually optimized to
maximize the expected total financial wealth of the DM [no
narrow bracketing, no actual risk aversion for gambles of this
size]
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Another Kind of Inhomogeneity in Precision

There can also be multiple “simple points”, as in the “recall”
task of Enke et al.:

both the case of all good news and the case of all bad news
are cases that can be easily distinguished from nearby cases

— leading to repulsion from both points
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“Recall” Task: Repulsion from Both Ends
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Another Kind of Inhomogeneity in Precision

There can also be multiple “simple points”, as in the “recall”
task of Enke et al.:

both the case of all good news and the case of all bad news
are cases that can be easily distinguished from nearby cases

— leading to repulsion from both points

And the special character of these points seems more clearly to
relate to the precision with which the evidence is represented,
rather than simplicity of solution of the arithmetic calculation
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Another Kind of Inhomogeneity in Precision

In fact, a similar phenomenon is common in purely perceptual
estimation tasks

— when subjects have to estimate the relative proportion of
two extensive magnitudes: fraction of dots in an array that are
of a particular color, fraction of letters in a sequence that have
been As, etc. [see Hollands and Dyre (2000)]

Woodford (Columbia) Lecture 2 November 12, 2025 45 / 59



Bias in Judged Proportions

[figure from Hollands and Dyre (2000)]
horizontal axis = true proportion

note similar “inverse-S shaped” curve in each case
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Another Kind of Inhomogeneity in Precision

In fact, a similar phenomenon is common in purely perceptual
estimation tasks

— when subjects have to estimate the relative proportion of
two extensive magnitudes: fraction of dots in an array that are
of a particular color, fraction of letters in a sequence that have
been As, etc. [see Hollands and Dyre (2000)]

This suggests that the pattern in the “recall” task is mainly
about imprecision in recognition of which fraction of the
news is good rather than bad, rather than imprecision in the
calculations required by the formula
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Another Kind of Inhomogeneity in Precision

The “inverse-S shaped” pattern of biases can also be explained
as optimal adaptation to noise in the internal representation
of the relative proportions

— under the hypothesis that the representation of proportions is
more precise at both extremes [see Khaw et al. (2025) for
details]

This provides a possible explanation for the shape of the
“probability weighting function” of prospect theory

[to discuss further in Lecture 3]
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Logarithmic Encoding Model: Details

Suppose that for each of two stimuli with magnitudes Xi

(i = 1, 2),
ri ∼ N(logXi , ν2)

And suppose also that 2 is judged to be greater than 1 if and
only if r2 > r1

Then

Prob[“2 is greater”] = Prob[r2 − r1 > 0] = Φ
(
logX2/X1√

2ν

)
is an increasing function of the ratio X2/X1, independent of
absolute magnitudes [“Weber’s Law”]
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Logarithmic Encoding Model: Details

Now consider instead an estimation task. Suppose

r ∼ N(logX , ν2)

and estimation rule is optimized for a prior distribution

logX ∼ N(µ, σ2)

Then same calculations as on slide 10 imply that, conditional on
subjective representation r , the posterior distribution for
x ≡ logX is given by N(µ̂, σ̂2), with

µ̂ ≡ µ + β(r − µ), σ̂2 ≡ 1

σ−2 + ν−2
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Properties of a Log-Normal Posterior

If the posterior distribution of logX is normal, then the posterior
distribution of X is log-normal. This is a two-parameter family
of probability distributions (parameterized by µ and σ, the mean
and standard deviation of logX ).

Properties of a log-normally distributed random variable: if
logX ∼ N(µ, σ2),

E[X ] = eµ+(1/2)σ2

Var[X ] = [eσ2 − 1] e2µ+σ2
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Logarithmic Encoding Model: Details

If we assume that a subject’s estimate X̂ of the magnitude X ,
based on the subjective representation r , is chosen so as to
minimize the mean squared error,

E[(X̂ − X )2],

then X̂ (r) = E[X |r ], so that

log X̂ (r) = µ̂ + (1/2)σ̂2 = µ + β(r − µ) + σ̂2/2

Then conditional on the value of X ,

log X̂ ∼ N(µ + β(logX − µ) + σ̂2/2, β2ν2)
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Logarithmic Encoding Model: Details

The properties of a log-normal distribution then imply:

logE[X̂ |X ] = µ + β(logX − µ) + σ̂2/2+ β2ν2/2

s.d.[X̂ |X ]

E[X̂ |X ]
= [eβ2ν2 − 1]1/2

Thus the model predicts:

logE[X̂ ] a linear function of logX [linear log-log plot] with
slope 0 < β < 1; so E[X̂ ] an increasing, strictly concave
function of X

cross-over point X ∗ between over/under-estimation satisfies
X ∗ = k · E[X ], where k > 0 is independent of µ (but depends
on σ) [central tendency of judgment]

s.d.[X̂ ] grows in proportion to E[X̂ ] as X increases
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Logarithmic Encoding Model: Details

The model also implies that, in the case of adaptation to a given
distribution of presented stimuli [fixing µ and σ], a manipulation
that increases the imprecision of the internal representation [i.e.,
increases ν], such as an increase in time pressure, should

increase subjective uncertainty about the right estimate, since
larger ν implies a larger σ̂, and hence a larger standard
deviation of the posterior,

s.d.[X |r ] = [exp(σ̂2)− 1]1/2X̂ (r),

associated with any given response X̂ (r); and

reduce the elasticity β of the mean response E[X̂ |X ] with
respect to increases in X

as observed by Xiang et al. (2021).
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