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Risk Attitudes in the Laboratory

We have already discussed one puzzling aspect of choices
observed in the laboratory: behavior not (close to) risk-neutral,
even when stakes are quite small

— and we have argued that a model of choice based on a noisy
representation of the gambles offered provides a simple
explanation for this

But even more puzzling for EUT: subjects’ apparent degree of
risk aversion — even whether choices are risk averse or risk
seeking — vary depending on the nature of the gambles offered
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Kahneman andTversky (1979)

Problem
In addition to whatever you own, you have been given 1000. You are
now asked to choose between (a) winning an additional 500 with
certainty, or (b) a gamble with a 50 percent chance of winning 1000
and a 50 percent chance of winning nothing.

Problem
In addition to whatever you own, you have been given 2000. You are
now asked to choose between (a) losing 500 with certainty, and (b) a
gamble with a 50 percent chance of losing 1000 and a 50 percent
chance of losing nothing.
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Kahneman and Tversky (1979)

Problem
In addition to whatever you own, you have been given 1000. You are
now asked to choose between (a) winning an additional 500 with
certainty, or (b) a gamble with a 50 percent chance of winning 1000
and a 50 percent chance of winning nothing.

84% of subjects choose (a)

Problem
In addition to whatever you own, you have been given 2000. You are
now asked to choose between (a) losing 500 with certainty, and (b) a
gamble with a 50 percent chance of losing 1000 and a 50 percent
chance of losing nothing.

69% of subjects choose (b)
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Kahneman and Tversky: “Isolation Effect”

Problem for EUT: in both cases, subjects are choosing between
the same probability distributions over final wealth levels:

(a) initial wealth + 1500 with certainty

VS

(b) 50 percent chance of initial wealth + 1000,
50 percent chance of initial wealth + 2000

K-T explanation: people don’t integrate the initial gain with
subsequent gains/losses to evaluate choices in terms of final
wealth

— instead, consider second-stage gains/losses only, ignoring the
initial gain because it is common to both choices: “isolation
effect”
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Kahneman and Tversky: “Reflection Effect”

This hypothesis renders the two problems no longer equivalent
— but we need a further hypothesis to explain the result:

modal subject is risk-averse when choice is framed as between
a certain gain and a random gain, but instead risk-seeking
when it’s framed as between a certain loss and a random loss

it isn’t the amount of risk that explains the degree of penalty
for risk, but whether gains or losses are involved

K-T postulate that changing the sign of the prospective payoffs,
while preserving their magnitudes and probabilities, flips the
sign of the typical subject’s risk attitude

— they call this the “reflection effect”

Woodford Lecture 3 November 17, 2025 6 / 48



Kahneman and Tversky: “Reflection Effect”

This hypothesis renders the two problems no longer equivalent
— but we need a further hypothesis to explain the result:

modal subject is risk-averse when choice is framed as between
a certain gain and a random gain, but instead risk-seeking
when it’s framed as between a certain loss and a random loss

it isn’t the amount of risk that explains the degree of penalty
for risk, but whether gains or losses are involved

K-T postulate that changing the sign of the prospective payoffs,
while preserving their magnitudes and probabilities, flips the
sign of the typical subject’s risk attitude

— they call this the “reflection effect”

Woodford Lecture 3 November 17, 2025 6 / 48



Risk Attitude as Adaptation to Cognitive Noise

These patterns of behavior are not mysterious, if choices are
based on a noisy representation of the problem

Consider a choice between (a) initial transfer Y , plus an
additional C > 0 with certainty, or (b) initial transfer Y , plus an
additional X > 0 with probability p (otherwise, no additional
amount)

If r is the internal representation of quantities Y ,X , p,C , then
a decision rule that maximizes DM’s expected financial wealth
[equivalent to max’ing E[U(W )] if these quantities are all small
relative to the curvature of U(W )] will be to choose (b) if and
only if

E[Y |r ] + E[pX |r ] > E[Y |r ] + E[C |r ]
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Risk Attitude as Adaptation to Cognitive Noise

... choose (b) if and only if

E[Y |r ] + E[pX |r ] > E[Y |r ] + E[C |r ]
or equivalently, if and only if

E[pX |r ] > E[C |r ]

If the parts of r that convey information about p,X ,C are
independent of the part that depends on Y , then the
probability that this holds is independent of the value of Y

— the “isolation effect”
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Risk Attitude as Adaptation to Cognitive Noise

In addition, if we suppose that the way that the numerical
magnitudes X and C are encoded (and the prior over their
possible values) are the same whether these amounts of money
represent gains or losses, then the condition for choosing (b)
over (a) [the risk-seeking (or less risk-averse) choice] in the
problem with risky vs. certain gains,

E[pX |r ] > E[C |r ],
will instead be the condition for choosing (a) over (b) [the
risk-averse (or less risk-seeking) choice] in the problem with
risky vs. certain losses
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Risk Attitude as Adaptation to Cognitive Noise

Then if (a) is the modal choice in the problem involving gains
(indicating risk aversion if C = pX ), we should expect (b) to
be the modal choice in the problem involving losses (indicating
risk seeking if C = pX )

— the “reflection effect”

This will be true regardless of whether the inequality

E[pX |r ] > E[C |r ]
holds less than 1/2 the time (even though C = pX ) because the
average value of E[X |rx ] is a concave function of X [as implied
by the model of logarithmic coding discussed in Lecture 2], or
because the average value of E[p |rp] is smaller than p [as could
be true, see below]
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Risk Attitudes in the Laboratory

K-T further document a more complex pattern of switches
between risk-averse and risk-seeking choices

Tversky and Kahneman (1992): elicit certainty-equivalent
values for simple lotteries (p,X ), find a “fourfold pattern” of
risk attitudes:

risk averse w.r.t. gains when p is substantial

risk seeking w.r.t. gains when p is small

risk averse w.r.t. losses when p is small

risk seeking w.r.t. losses when p is substantial
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“Fourfold Pattern of Risk Attitudes”
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Figure 2: Probability weighting function separately for subjects above / below average cognitive uncer-
tainty. The partition is done separately for each probability × gains / losses bucket. The plot shows av-
erages and corresponding standard error bars. The figure is based on 2,525 certainty equivalents of 700
subjects.

Table 1 provides a regression analysis of these patterns, which directly corresponds

to estimating the neo-additive weighting function in equation (7). Our object of interest

is the extent to which a subject’s normalized certainty equivalent is (in)sensitive to vari-

ations in the probability of the non-zero payout state. Thus, we regress a participant’s

absolute normalized certainty equivalent on (i) the probability of receiving the non-zero

gain / loss; (ii) cognitive uncertainty; and (iii) an interaction term. In our baseline spec-

ification, we do not include subject fixed effects, meaning that we embrace the variation

that results from across-subject heterogeneity in cognitive uncertainty.

The results show that higher cognitive uncertainty is associated with lower respon-

siveness to variations in objective probabilities, in both the gains and the loss domain. In

terms of quantitative magnitude, the regression coefficients suggest that with cognitive

uncertainty of zero, the slope of the neo-additive weighting function is given by 0.65,

yet it is only 0.34 for maximum cognitive uncertainty of one. A different way to gauge

quantitative magnitudes is to standardize cognitive uncertainty into a z-score. When

doing so, the regression results (not reported) suggest that an one standard deviation

increase in cognitive uncertainty decreases the slope of the neo-additive weighting func-

17

[from Enke and Graeber (2023)]
Woodford Lecture 3 November 17, 2025 12 / 48



Explaining the Fourfold Pattern of PT

This pattern can also easily be explained, as an optimal
adaptation to the noisy retrieval of probability information

Model: experimenter describes lottery (p,X ) [note: X may be
positive or negative]

suppose [for now] that DM’s cognitive process can retrieve value
of X with perfect precision, but value of p only with noise:

— noisy retrieved signal [internal representation of payoff
probability]

rp ∼ f (rp |p)
with conditional distribution independent of X

DM’s elicited certainty-equivalent value for the lottery must
be some function C (X , rp)
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Explaining the Fourfold Pattern of PT

Let us again suppose that the decision process is optimized to
maximize expected financial wealth of DM

Then under standard approaches to incentivizing the choice
[multiple price list, with one selected at random to implement;
or BDM auction], optimal certainty equivalent will be

C = E[pX |X , rp]

where conditional expectation is computed using joint
distribution for (X , p, rp) implied by

prior distribution over lotteries (p,X ) for which decision
process is optimized

model of noisy coding of probability information
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Explaining the Fourfold Pattern of PT

Suppose further that distribution of p is independent of stake
size X , under the prior [true of experiments of Enke and Graeber
(2023), or KLW experiment below]; then prediction is simply

C = E[p |rp] · X

Since rp is random conditional on the true value of p, the
model predicts trial-to-trial variability of responses

The median certainty equivalent across trials, for a given lottery
(p,X ), is predicted to be

Cmed = w(p) · X ,

where
w(p) ≡ med[E[p |rp] |p]
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Explaining the Fourfold Pattern of PT

w(p) ≡ med[E[p |rp] |p]

This provides an interpretation for the “probability weighting
function” of prospect theory

The model predicts the “fourfold pattern’’ documented by
TK, if there exists an interior probability p̄ such that w(p) > p
for all 0 < p < p̄, while w(p) < p for all p̄ < p < 1

— and we can easily specify the encoding noise so that Bayesian
decision rule has this property

— intuition: noise in internal representation ⇒ regression to
the prior mean [“Behavioral Attenuation”]
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A Semi-Analytical Example (Khaw et al., 2025)

Suppose that the relative odds of the two possible outcomes are
encoded by

rp ∼ N(log
p

1− p
, ν2)

— consistent with the finding of Frydman and Jin (2025) that
people make fewer errors in comparisons of probabilities when
either very small or very large; and finding of Enke and Graeber
(2023) that CU is lower for lotteries with p nearer to 0 or 1

And suppose that the prior distribution from which true log
odds are drawn is also Gaussian:

log
p

1− p
∼ N(µ, σ2)

Then posterior log odds conditional on rp will also be Gaussian
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A Semi-Analytical Example

Posterior log odds:

log
p

1− p

∣∣∣rp ∼ N(µ̂(rp), σ̂2)

where

µ̂(rp) ≡ γ · rp + (1− γ) · µ, γ ≡ σ2

σ2 + ν2
< 1

σ̂−2 ≡ σ−2 + ν−2

Using approximation of Daunizeau (2017) for the mean of a
logit-normal random variable, this implies

E[p |rp] ≈ eαµ̂(rp)

1+ eαµ̂(rp)

where 0 < α < 1 is a decreasing function of σ̂
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A Semi-Analytical Example

Then E[p |rp] is an increasing function of rp ⇒ its median
value is the value when rp takes its median value (conditional on
p) ⇒ when rp equals the true log odds

Hence (in this approximation) w(p) is given by

log
w(p)

1− w(p)
≈ αγ log

p

1− p
+ (1− αγ) log

p̄

1− p̄

where

log
p̄

1− p̄
≡ α(1− γ)

1− αγ
· µ
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A Semi-Analytical Example

log
w(p)

1− w(p)
≈ αγ log

p

1− p
+ (1− αγ) log

p̄

1− p̄

This has the “inverse-S shape” required to explain the fourfold
pattern of PT, with “crossover point” p̄ defined above

But note that the exact shape should depend on degree of
cognitive noise in a given setting, and the prior associated
with it
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A Semi-Analytical Example

log
w(p)

1− w(p)
≈ αγ log

p

1− p
+ (1− αγ) log

p̄

1− p̄

The predicted functional form — “linear in log odds” — is
found by Zhang and Maloney (2012) to fit experimental data on
estimation of probabilities, relative frequencies, or
relative proportions in a variety of contexts

in experiments where the proportions (p, 1− p) occur exactly
as often as (1− p, p) (so that the prior should be symmetric
around p = 1/2), the crossover point p̄ is found to be near
1/2, as above model would predict [recall the figure from
Hollands and Dyre (2000), in Lecture 2]
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Bias in Judged Proportions

[figure from Hollands and Dyre (2000)]
horizontal axis = true proportion

note crossover point near 50% in each case
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A Semi-Analytical Example

log
w(p)

1− w(p)
≈ αγ log

p

1− p
+ (1− αγ) log

p̄

1− p̄

The predicted functional form — “linear in log odds” — is
found by Zhang and Maloney (2012) to fit experimental data on
estimation of probabilities, relative frequencies, or
relative proportions in a variety of contexts

when instead values p < 1/2 occur much more often than
values p > 1/2, the crossover point is found to be much lower
[e.g., next slide]

— this may account for the crossover point p̄ < 1/2 commonly
found in empirical estimates of the PT “probability weighting
function”
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Bias in Judged Frequency of Letter Occurrence

Zhang and Maloney The representation of uncertainty

FIGURE 3 | Linear in log odds fits: frequency estimates. The two data
sets in Figures 1A,B are re-plotted on log odds scales as (A,B),
respectively. The blue line is the best-fitting LLO fit. R2 denotes the
proportion of variance accounted by the fit. The S-shaped distortions of
frequency/probability on linear scales in Figures 1A,B are well captured by
the LLO fits.

FREQUENCY ESTIMATION
We introduced Attneave (1953) earlier as an example of overesti-
mation of small relative frequency and underestimation of large
relative frequencies. In his experiment, participants estimated the
relative frequency of each letter in written English (Figure 1A).
While a linear fit could only account for 63% of the variance, the
LLO function fitted to the same data transformed in Figure 3A
accounts for 77% of the variance.

Note that the relative frequency of even the most common letter
(“e”) is less than 0.15. Intriguingly, the estimated crossover point
p̂0, 0.044, for Attneave’s (1953) data is not far from 1/26 (=0.039),
the reciprocal of the number of letters in the alphabet. We return
to this point later.

Another impressive example is Lichtenstein et al. (1978). Par-
ticipants were given a list of 41 possible causes of death in the US,
such as flood, homicide, and motor vehicle accidents (MVA). Par-
ticipants were asked to estimate the frequencies of the causes. The
true frequency of one cause was provided to participants as a refer-
ence. One group of participants was provided with the frequency
of Electrocution (1000) as the reference and a second group, the
frequency of MVA (50000). We divided the true frequencies and
estimated frequencies (averaged across participants) by the US
population (2.05 × 108) to obtain the relative frequencies, p and
π. We noticed that although some specific causes were unreason-
ably overestimated relative to others (e.g., floods were estimated
to take more lives than asthma although the latter is nine times
more likely), the overestimation or underestimation of relative
frequency of all causes as a whole can be satisfactorily accounted
by the LLO function. Figure 4A shows the LLO fits for the two
groups.

In the above two examples, participants’ estimation of fre-
quency was based on their memory of events (e.g., reading of
a case of lethal events on the newspaper). To show the LLO trans-
formation is not unique to memory nor to sequential presentation
of events, our third example is Varey et al. (1990), which demon-
strates an LLO transformation in frequency estimation from one
visual stimulus. The task was to estimate the relative frequency of

either black or white dots among an array of black and white dots.
White dots were always less than half of the total number of dots.
Eleven levels of relative frequency were used. Participants reported
the relative frequency immediately after they saw the visual dis-
play. Varey et al. (1990) found considerable distortion of relative
frequency. Figure 4B shows the LLO fits separately for participants
who estimated the relative frequency of white dots and those who
estimated black dots.

CONFIDENCE RATING
Confidence rating refers to the task where participants estimate
the probability of correctness or success of their own action. For
example, in Gigerenzer et al. (1991), participants answered forced-
choice questions like “Who was born first? (a) Buddha or (b)
Aristotle” and then chose for each question how confident they
were to be correct: 50, 51–60, 61–70, 71–80, 81–90, 91–99, or 100%
confident. Participants choosing 51–60% were counted to be 55%
confident about the answer, and so on. Converted to proportion,
the rated confidence is a counterpart of estimated probability, π.
The true probability, p, in the confidence rating task is defined
as the relative frequency to be correct for a specific choice of
confidence level. We re-plot the representative set condition of
Gigerenzer et al. (1991) Figure 6 in Figure 5A. The slope γ of
the LLO fit is greater than one. That is, an underestimation of
small probability (the probability of the harder task) and overes-
timation of large probability (the probability of the easier task). A
qualitative description of this phenomenon is usually referred as
a hard–easy effect. This pattern is the reverse of that of the above
examples of frequency estimation tasks. We discuss this difference
later.

Gigerenzer et al. (1991) is an example of human confidence on
a cognitive task. Similar LLO transformations are found in confi-
dence ratings in motor tasks. McGraw et al. (2004) required par-
ticipants to attempt basketball shots and give a confidence rating
before each attempt. Their results are re-plotted as Figure 5B.

DECISION UNDER RISK OR UNCERTAINTY
A classical task of decision under risk is to choose between two
gambles or between one gamble and one sure payoff. Kahne-
man and Tversky (1979) proposed that the subjective probability
used in decision-making, a.k.a. the decision weight function2, is a
non-linear function of the probability stated in the gamble.

Based on their choices between different gambles and different
sure payoffs, participants’ decision weight (a counterpart of π) for
any specific stated probability (p) can be estimated. In Figures 1B
and 3B, we re-plot the decision weight for gains of Tversky and
Kahneman (1992) against stated probability on linear scales and
log odds scales. The LLO fit explains 97% of the variance, with
γ = 0.60 and p0 = 0.40.

The data presented in most decision-making studies are aver-
aged across participants. As an exception, Gonzalez and Wu (1999)
elicited decision weights for each individual participants. We

2We use the generic term “probability distortion” to refer to non-linear transfor-
mations of probability in different kinds of task. In decision under risk, the term
“probability weight function” or “decision weight function” would coincide with
what we refer to as probability distortion.

www.frontiersin.org January 2012 | Volume 6 | Article 1 | 3

[figure from Zhang and Maloney (2012)]
[plotting data from Attneave (1953)]

actual (p) and estimated (π) log odds for each letter in English text

Woodford Lecture 3 November 17, 2025 24 / 48



Remaining Questions

1 Is it noise in the retrieval of numerical information supplied by
experimenter (e.g., value of p) that creates imprecision, as in
above exposition, or noise in retrieval of the outcome of EV
calculation?

— two models equivalent as explanations of Enke-Graeber data,
because value of |X | is the same across all trials; only p varies

2 Cognitive noise model can account for the fourfold pattern
emphasized by PT; but can it also account for stake-size
effects?
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Remaining Questions

To address these questions, Khaw et al. (2025) examine the fit
of a model in which risk attitudes result from cognitive
imprecision to a dataset in which

there is independent variation in lotteries along multiple
dimensions:

gains vs. losses

probability of non-zero payoff

magnitude of non-zero payoff

they collect data not just on a subject’s typical valuation of
some lottery, but on the amount of trial-to-trial variability in
their judgments
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Experimental Interface (Khaw et al., 2025)
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Risk Premium Depends on Both p and X
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top line = risky gains; bottom line = risky losses
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Risk Premium Depends on Both p and X
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Features of Data to Explain

1 Distribution of values of |WTP | conditional on |X | is similar in
gain and loss domains

2 E[logWTP/EV ] roughly an affine function of log |X |, with
negative slope (between 0 and -1)

also true (for lotteries involving gains) in data of Gonzalez and
Wu (2022), which have 15 values of X for each value of p

implies change in sign of RRA if |X | varies over wide enough
range

— the sign change occurs in KLW data when p = 0.20; in GW
data when p = 0.10 or 0.25; and at lower values of p when
wider range of stakes (e.g., Hershey and Schoemaker, 1980)

Woodford Lecture 3 November 17, 2025 30 / 48



Features of Data to Explain

1 Distribution of values of |WTP | conditional on |X | is similar in
gain and loss domains

2 E[logWTP/EV ] roughly an affine function of log |X |, with
negative slope (between 0 and -1)

also true (for lotteries involving gains) in data of Gonzalez and
Wu (2022), which have 15 values of X for each value of p

implies change in sign of RRA if |X | varies over wide enough
range

— the sign change occurs in KLW data when p = 0.20; in GW
data when p = 0.10 or 0.25; and at lower values of p when
wider range of stakes (e.g., Hershey and Schoemaker, 1980)

Woodford Lecture 3 November 17, 2025 30 / 48



Features of Data to Explain

1 Distribution of values of |WTP | conditional on |X | is similar in
gain and loss domains

2 E[logWTP/EV ] roughly an affine function of log |X |, with
negative slope (between 0 and -1)

also true (for lotteries involving gains) in data of Gonzalez and
Wu (2022), which have 15 values of X for each value of p

implies change in sign of RRA if |X | varies over wide enough
range

— the sign change occurs in KLW data when p = 0.20; in GW
data when p = 0.10 or 0.25; and at lower values of p when
wider range of stakes (e.g., Hershey and Schoemaker, 1980)

Woodford Lecture 3 November 17, 2025 30 / 48



Features of Data to Explain

1 Distribution of values of |WTP | conditional on |X | is similar in
gain and loss domains

2 E[logWTP/EV ] roughly an affine function of log |X |, with
negative slope (between 0 and -1)

also true (for lotteries involving gains) in data of Gonzalez and
Wu (2022), which have 15 values of X for each value of p

implies change in sign of RRA if |X | varies over wide enough
range

— the sign change occurs in KLW data when p = 0.20; in GW
data when p = 0.10 or 0.25; and at lower values of p when
wider range of stakes (e.g., Hershey and Schoemaker, 1980)

Woodford Lecture 3 November 17, 2025 30 / 48



Features of Data to Explain

1 Distribution of values of |WTP | conditional on |X | is similar in
gain and loss domains

2 E[logWTP/EV ] roughly an affine function of log |X |, with
negative slope (between 0 and -1)

3 This function has both a higher intercept and more negative
slope, the smaller is p

the way intercept shifts with p confirms the “fourfold pattern”
of Tversky and Kahneman (1992)

but sign of relative risk premium doesn’t depend only on
sign(X ) and p — stake size also matters
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Features of Data to Explain

1 Distribution of values of |WTP | conditional on |X | is similar in
gain and loss domains

2 E[logWTP/EV ] roughly an affine function of log |X |, with
negative slope (between 0 and -1)

3 This function has both a higher intercept and more negative
slope, the smaller is p

4 Variability of log |WTP | greater for smaller values of p
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Model with Multiple Kinds of Cognitive Noise

Noisy internal representations:

information (p,X ) defining the lottery encoded by internal
states (rp, rx ), where

rp ∼ N(log
p

1− p
, ν2z )

as above
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Model with Multiple Kinds of Cognitive Noise

Noisy internal representations:

the payoff magnitude |X | is then encoded by

rx ∼ N(log |X |, ν2x (rp))

conditional on the draw of rp

mean proportional to log |X | ⇒ uniform discriminability of
nearby magnitudes in percentage terms [“Weber’s Law”]

— consistent with evidence on precision with which monetary
amounts (prices) are recalled after time delay (Dehaene and
Marques, 2002)

sign of X treated as coded without error
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Model with Multiple Kinds of Cognitive Noise

Noisy internal representations:

the payoff magnitude |X | is then encoded by

rx ∼ N(log |X |, ν2x (rp))

conditional on the draw of rp

precision of coding of payoff magnitude allowed to depend on
[subjective perception of] likelihood of relevance

— as in Van den Berg and Ma (2018): precision of encoding in
working memory depends on probability that a given location
will be probed
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Model with Multiple Kinds of Cognitive Noise

Announced WTP: assume

logWTP ∼ N(f (rx , rp), ν2c )

for some function f (rx , rp) [optimized].

Endogenous precision of coding: both f (rx , rp) and ν2(rp) are
chosen to minimize

E[L(rx , rp) + A(σ2
x /ν2x (rp))]

where
L(rx , rp) ≡ E[(WTP − EV )2|rx , rp]

and second term [A > 0 a free parameter] represents cost of
more precise coding

— if cost is proportional to number of independent samples
used to code the value of |X |, should increase ∼ 1/ν2x
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Model with Multiple Kinds of Cognitive Noise

Announced WTP: assume

logWTP ∼ N(f (rx , rp), ν2c )

for some function f (rx , rp) [optimized]

Endogenous precision of coding: both f (rx , rp) and ν2(rp) are
chosen to minimize

E[L(rx , rp) + A(σ2
x /ν2x (rp))]

where
L(rx , rp) ≡ E[(WTP − EV )2|rx , rp]

and second term [A > 0 a free parameter] represents cost of
more precise coding

— this cost function used by van den Berg and Ma (2018)
to fit endogenous precision of visual working memory
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Model with Multiple Kinds of Cognitive Noise

Expected loss evaluated under priors:

log |X | ∼ N(µx , σ2
x ) [same for gains and losses]

log(p/1− p) ∼ U(µz −
√
3σz , µz +

√
3σz)

and parameters of prior distributions for |X | and p are chosen
to max likelihood of the values used in experiment [so
µx , σx , µz , σz are not additional free parameters]

Model thus has 3 free parameters: ν2z , ν2c ,A, in addition to the
parameters of the distribution of values used in the experiment
— to explain 220 data moments
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Fitted Distributions of WTP
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top line = risky gains; bottom line = risky losses
blue = data; red = model predictions
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Fitted Distributions of WTP
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Which Kind of Noise is Needed?

Variant models based on cognitive noise:

LL BIC
baseline model -1602.5 3236.3
exogenous noise -1604.7 3240.7
no payoff noise -1608.7 3242.4
no probability noise -1990.0 4005.0
no response noise -1646.1 3317.2
noisy coding of EV -1966.4 3957.9

Overall Bayes factor in favor of the baseline model, relative to
noisy coding of EV: greater than 10156

— relative to model with precise reading of probability:
greater than 10166
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Summary

A variety of aspects of measured risk attitudes can be explained
by a unified model, according to which DM’s decision rule is
optimally adapted to the presence of cognitive noise

suggesting that risk attitudes (for small gambles) are better
viewed as consequences of imprecise mental calculation,
rather than any actual attitudes toward risk

consistent with Oprea (2024) finding of similar biases in
judgments about the dollar value of obtaining a fraction of a
monetary amount with certainty
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Summary

As in perceptual domains, important to model variability of
responses and average bias in responses jointly

A model with independent noise in the retrieved values of
both probabilities and payoffs fits better than one with only
noise in the retrieved EV of lottery

and fit is improved by endogenizing the precision with which
payoffs are encoded/retrieved

Structure of cognitive noise can be disciplined through analogies
with what is known about imprecise internal representation of
numbers and probabilities in other contexts — the main
distortions are not unique to choice under risk
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